Computability Theory and Infinitary Combinatorics

Noah A. Hughes
Winston-Salem State University
hughesna@wssu. edu - nahughes.github.io

Friday, December 2nd, 2022

Fall 2022 Colloquium Series
Department of Mathematical Sciences
Appalachian State University

Before I begin speaking,

I'd like to say thanks.

Motivation - Mathematical Logic

From Paul Shafer:
I describe calculus as the mathematics of change[,] geometry as the mathematics of shape,
... [and math] logic as the mathematics of mathematics.
We take mathematical theorems, proofs, and constructions as our objects of study, specifically from infinitary ${ }^{1}$ combinatorics.

The goal is to understand the foundational mechanics of mathematics:
e.g.,

- discern underlying connections in seemingly disparate mathematical theorems
- determine the necessary ingredients in any proof of a particular theorem.

Computability theory provides a powerful viewpoint from which to conduct this analysis.
${ }^{1}$ countably infinite

Two Frameworks

Reverse Mathematics

Prove results of the form:
Over a weak base theory \mathcal{B}, the axiom A is both necessary and sufficient to prove the familiar theorem ξ.

$$
\mathcal{B} \vdash A \Longleftrightarrow \xi
$$

Computability Theoretic Reductions

Reduce the problem of finding one desired mathematical object to finding another object by use of a computable transformation.
$X \quad-\Phi \rightarrow$
commutative ring, R

$\leftarrow \Psi-$ infinite binary tree, T

infinite path, f

Two Frameworks

Reverse Mathematics

Prove results of the form:
Over a weak base theory \mathcal{B}, the axiom A is both necessary and sufficient to prove the familiar theorem ξ.

ZF set theory \vdash Axiom of Choice \Longleftrightarrow Zorn's Lemma

Computability Theoretic Reductions

Reduce the problem of finding one desired mathematical object to finding another object by use of a computable transformation.

Essentials of Computability Theory

Fix an effective enumeration of the partial computable functions on \mathbb{N}

$$
\Phi_{0}, \Phi_{1}, \Phi_{2}, \ldots, \Phi_{e}, \Phi_{e+1}, \ldots
$$

A set C is computable if its characteristic function $\chi_{C}=\Phi_{e}$ for some e.

The set $\emptyset^{\prime}=\left\{e: \Phi_{e}(e)\right.$ halts $\}$ is the canonical noncomputable set.

Given a set $A \subseteq \mathbb{N}$, we relativize each Φ_{e} to Φ_{e}^{A}. Another set B is A-computable if $\chi_{B}=\Phi_{e}^{A}$ for some e. The set $A^{\prime}=\left\{e: \Phi_{e}^{A}(e)\right.$ halts $\}$ is the canonical set that A cannot compute. We call A^{\prime} the Turing jump of A.

Computable Transformations

We can view each total computable function Φ as a functional on subsets of \mathbb{N} or $2^{\mathbb{N}}$.

Ex Suppose $\Phi^{A}=\chi_{B}$ with

$$
\begin{gathered}
A=\{2 k: k \in \mathbb{Z}\} \text { and } B=\{p \in \mathbb{Z}: p \text { is prime }\} \\
A:\langle 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, \ldots\rangle \\
\mid \\
\begin{array}{c}
\downarrow \\
B:\langle 0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0, \ldots\rangle
\end{array}
\end{gathered}
$$

In this way, we can transform a countable ring $R(\operatorname{coded}$ in $\mathbb{N})$ to an infinite binary tree $T=\Phi^{R}($ coded in $\mathbb{N})$.

Interregnum - A combinatorial preview

Posets and Graphs

$13 \leq 10 \leq 6 \leq 1 ; \quad 15 \leq 16 \leq 2 ; \quad 15$ and 11 are incomparable \ldots

Reverse Mathematics with the Big Five

Goal: Determine exactly which axiom(s) are needed in the proof of a (countable analogue of a) particular theorem.

Method: Given a theorem ξ, fix a weak base axiom system \mathcal{B} which cannot prove ξ and find an additional axiom A such that:

$$
\begin{gathered}
\mathcal{B} \vdash \mathrm{A} \rightarrow \xi \\
\text { a "regular" proof } \\
\mathrm{ZF} \vdash \mathrm{AC} \rightarrow \mathrm{ZL} \\
\text { a "regular" proof }
\end{gathered}
$$

$$
\mathcal{B} \vdash \xi \rightarrow \mathrm{A}
$$

a "reversed" proof
$\mathrm{ZF} \vdash \mathrm{ZL} \rightarrow \mathrm{AC}$
a "reversed" proof

Traditionally, we use RCA_{0} as the base system and require only four additional set existence axioms to conduct this analysis.

The Big Five Phenomenon

The Big Five subsystems of Z_{2}

RCA_{0} : Axioms for first-order arithmetic, a weak induction principle, and the "recursive comprehension axiom."

Algorithmically definable sets exist.
$W_{K L}{ }_{0}: R C A_{0}+$ weak Kőnig's lemma Every infinite binary tree has an infinite path.

ACA $_{0}:$ RCA $_{0}+$ "arithmetical comprehension axiom" Sets definable with number quantifiers exist.

ATR ${ }_{0}: A C A_{0}+$ (axioms for) "arithmetical transfinite recursion" Sets definable by recursion on a given countable well-order exist.
$\Pi_{1}^{1}-C A_{0}: A C A_{0}+" \Pi_{1}^{1}$ comprehension axiom"
Sets definable with one universal set quantifier exist.

The Big Five Phenomenon in Algebra

RCA $_{0} \vdash \quad$ Every countable field has an algebraic closure. T
$\mathrm{WKL}_{\mathbf{0}} \leftrightarrow$ Every countable commutative ring with identity has a prime ideal.
$\mathrm{ACA}_{0} \leftrightarrow$ Every countable commutative ring with identity has a maximal ideal.

ATR $_{0} \leftrightarrow$ Ulm's theorem: Any two countable reduced Abelian p-groups which the same Ulm invariants are isomorphic.
$\Pi_{1}^{1}-\mathrm{CA}_{0} \leftrightarrow$ Every countable Abelian group is the direct sum of a divisible group and a reduced group.

The Big Five Phenomenon in Analysis

$\mathrm{RCA}_{0} \vdash$ The intermediate value theorem. T
$W_{K L} L_{0} \leftrightarrow$ Heine/Borel: every covering of $[0,1]$ with a sequence of open intervals has a finite subcovering.
$A C A_{0} \leftrightarrow$ Balzano/Weierstraß: every bounded sequence of real numbers has a convergent subsequence.

ATR $_{0} \leftrightarrow$ Perfect set theorem: every uncountable closed set has a perfect subset.
Π_{1}^{1}-CA \leftrightarrow Cantor/Bendixson: Every closed subset of \mathbb{R}^{n} is the union of a countable set and a perfect set.

The Big Five Phenomenon in Combinatorics

$\mathrm{RCA}_{\mathbf{0}} \quad \vdash \quad$ Every finite bipartite graph satisfying Hall's condition T has a perfect matching.
$W K L_{0} \leftrightarrow$ Every infinite 2-branching tree has an infinite path.
$A C A_{0} \leftrightarrow$ Kőnig's lemma: every infinite finitely-branching tree has an infinite path.

ATR $R_{0} \leftrightarrow$ Any two countable well-orders are comparable.
$\Pi_{1}^{1}-\mathrm{CA}_{0} \leftrightarrow \quad$ Every tree has a largest perfect subtree.

Graphs and hypergraphs in reverse mathematics

A hypergraph $H=(V, E)$ consists of a set $V \subseteq \mathbb{N}$ of vertices and a collection $E=\left\{e_{0}, e_{1}, e_{2}, \ldots\right\} \subseteq \mathcal{P}(V)$ of edges. We say $u, v \in V$ are adjacent if $u, v \in e$ for some edge $e \in E$.
A graph $G=(V, E)$ is a hypergraph in which every edge has size 2 .
A graph is bipartite if $V=X \sqcup Y$ and for every $e \in E$, we have $e \nsubseteq X$ and $e \nsubseteq Y$.

A proper k-coloring of a (hyper)graph is a map
$c: V \rightarrow\{0,1, \ldots, k-1\}$ which is nonconstant on every edge $e \in E$.
Fact: A graph G is bipartite if and only if there exists a proper 2-coloring of G.

Graphs and hypergraphs in reverse mathematics

A hypergraph $H=(V, E)$ consists of a set $V \subseteq \mathbb{N}$ of vertices and a collection $E=\left\{e_{0}, e_{1}, e_{2}, \ldots\right\} \subseteq \mathcal{P}(V)$ of edges. We say $u, v \in V$ are adjacent if $u, v \in e$ for some edge $e \in E$.
A graph $G=(V, E)$ is a hypergraph in which every edge has size 2 .
A graph is bipartite if $V=X \sqcup Y$ and for every $e \in E$, we have $e \nsubseteq X$ and $e \nsubseteq Y$.

A proper k-coloring of a (hyper)graph is a map
$c: V \rightarrow\{0,1, \ldots, k-1\}$ which is nonconstant on every edge $e \in E$.
Fact: A graph G is bipartite if and only if there exists a proper 2-coloring of G.

Unique matchings

A matching of a bipartite graph $G=(X \cup Y, E)$ is an injection $f: X \rightarrow Y$ such that $\{x, f(x)\} \in E$ for all $x \in X$.

We use $A(x)$ to denote the set of vertices adjacent to x : $A(x)=\{y:\{x, y\} \in E\}$. The size of $A(x)$ is the degree of x.
A graph $G=(V, E)$ is locally finite if $A(x)$ is finite for all $x \in V$.
Theorem (with Jeff Hirst)
A locally finite bipartite graph $G=(X \cup Y, E)$ has a unique matching if and only if there is an enumeration $\left\langle x_{i}\right\rangle_{i \in \mathbb{N}}$ of the vertices in X such that for all n :

$$
\left|A\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right|=n+1
$$

Theorem

A bipartite graph $G=(X \cup Y, E)$ has a unique matching if and only if there is a well-order (X, \preceq) such that for every $x \in X$ there is a unique $y \in Y$ with

$$
A(x)-A\left(\left\{x^{\prime}: x^{\prime} \prec x\right\}\right)=\{y\} .
$$

Unique matchings

Theorem (with Jeff Hirst)
A locally finite bipartite graph $G=(X \cup Y, E)$ has a unique matching if and only if there is an enumeration $\left\langle x_{i}\right\rangle_{i \in \mathbb{N}}$ of the vertices in X such that for all n :

$$
\left|A\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right|=n+1
$$

Let MTE denote the "only if" direction and ETM denote the "if" direction.

Theorem (H.)

A bipartite graph $G=(X \cup Y, E)$ has a unique matching if and only if there is a well-order $(X, \leq x)$ such that for every $x \in X$ there is a unique $y \in Y$ with

$$
A(x)-A\left(\left\{x^{\prime}: x^{\prime} \prec x\right\}\right)=\{y\} .
$$

Let MTO denote the "only if" direction and OTM denote the "if" direction.

Unique matchings and reverse mathematics

The enumeration provides a coding advantage when proving reversals.
Theorem (with Jeff Hirst)
Over RCA

1. the statement ETM is provable; and
2. the statement MTE is provably equivalent to ACA_{0}.

Theorem (H.)

1. Over RCA_{0}, the statement OTM is provably equivalent to ACA_{0}; and
2. the statement MTO is provable in $A C A_{0}$.

3. the statement MTO is not provable in $W K L_{0}$.

Picture \#1 of Reverse Math: The Big Five

Ramsey's Theorem

Let $[\mathbb{N}]^{n}$ denote the set of all n-element subsets of \mathbb{N}.

Call $c:[\mathbb{N}]^{n} \rightarrow k=\{0,1,2, \ldots, k-1\}$ a k-coloring of $[\mathbb{N}]^{n}$.
$\mathbf{R} \mathbf{T}_{\mathbf{k}}^{\mathbf{n}}$: Every k-coloring of $[\mathbb{N}]^{k}$ has an infinite homogeneous set H.
$\mathrm{Ex}>\mathrm{RT}_{2}^{1}$ is the Pigeonhole Principle.
$-\mathrm{RT}_{2}^{2}$ states every infinite graph contains an infinite clique or anticlique.

Note: the combinatorial subtleties of $\mathrm{RT}_{\mathrm{k}}^{\mathrm{n}}$ collapse for $n \geq 3$ and $k \geq 2$.

Picture \#2 of Reverse Math: The Zoo

Ramsey's Theorem

Let $[\mathbb{N}]^{n}$ denote the set of all n-element subsets of \mathbb{N}.

Call $c:[\mathbb{N}]^{n} \rightarrow k=\{0,1,2, \ldots, k-1\}$
a k-coloring of $[\mathbb{N}]^{n}$.
$\mathbf{R} \mathbf{T}_{\mathbf{k}}^{\mathbf{n}}$: Every k-coloring of $[\mathbb{N}]^{k}$ has an infinite homogeneous set H.
$\mathrm{Ex}-\mathrm{RT}_{2}^{1}$ is the Pigeonhole Principle.
$-\mathrm{RT}_{2}^{2}$ states every infinite graph contains an infinite clique or anticlique.

Note: the combinatorial subtleties of $R T_{k}^{n}$ collapse for $n \geq 3$ and $k \geq 2$.

Picture \#2 of Reverse Math: The Zoo

Computability Theoretic Reductions

We recast a mathematical theorem as a formal problem P made up of instances X and associated solutions Y.

For example:

- MI: The problem whose instances R are countable rings with identity with solutions M which are maximal ideals in R.
- RT_{2}^{3} : The problem whose instances c are 2-colorings of $[\mathbb{N}]^{3}$ with solutions H which are homogeneous with respect to c.

Problems

$$
\mathbf{P}
$$

$$
\leq_{s W}
$$

Q

Four Reductions - Uniform vs. Non-uniform

A finer analysis

Seemingly different combinatorial principles that are equivalent in the reverse mathematics setting can often be distinguished using these reductions.

Showing P is not reducible to Q under one of these reductions reveals precise differences that reverse mathematics may obfuscate,
e.g. whether or not there is a uniform proof of P from Q.

$\mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{3} \leftrightarrow \mathrm{RT}_{2}^{4}$
$\mathrm{RT}_{2}^{3} \not \mathrm{KW}_{\mathrm{w}} \mathrm{RT}_{2}^{4}$
$\mathrm{RCA}_{0} \vdash \mathrm{RT}_{\mathrm{j}}^{\mathrm{n}} \leftrightarrow \mathrm{RT}_{\mathrm{k}}^{\mathrm{n}}, n \geq 1, k>j \geq 2$
$R T_{j}^{n} \not Z_{w} R T_{k}^{n}$

Posets and Dilworth's Theorem

A partially ordered set (poset) is a pair $\left(P, \leq_{P}\right)$ where \leq_{P} is a reflexive, transitive, and antisymmetric relation on $P \subseteq \omega$.

We say $X \subseteq P$ is:

- a chain if for all $x, y \in X$, either $x \leq_{p} y$ or $y \leq_{p} x$.
- an antichain if for all $x, y \in X$, we have $x \not \leq P y$ and $y \not \leq p x$.

Theorem (Dilworth's theorem)

In any finite poser $\left(P, \leq_{P}\right)$, the size of the largest antichain equals the minimum number of chains needed to cover P.

Theorem (CAC: Chain-Antichain Theorem) If $\left(P, \leq_{P}\right)$ is an infinite poser, then P contains either an infinite chain or an infinite antichain.

Stable and ω-ordered poses

We say an element $x \in P$ is

- small if $x \leq_{p} y$ for all but finitely many $y \in P$
- large if $y \leq_{P} x$ for all but finitely many $y \in P$
- isolated if $\left.x\right|_{P} y$ for all but finitely many $y \in P$

We say a posen $\left(P, \leq_{P}\right)$ is

- stable if every $x \in P$ is either small or isolated, or every $x \in P$ is either large or isolated.
- ω-ordered if for all $x, y \in P$, we have $x \leq p y$ implies $x \leq y$ in ω.

Let SCAC be the restriction of CAC to stable poses; CA ${ }^{\text {ord }}$ be the restriction of CAC to ω-ordered
 poses; and

SCAC ${ }^{\text {ord }}$ be the restriction of CAC to stable ω-ordered poses.

Chains and antichains

Theorem (Hirschfeldt and Shore)
$\mathrm{RCA}_{0} \vdash$ CAC strictly implies SCAC.
Theorem (H.)

- $\mathrm{RCA}_{0} \vdash \mathrm{CAC}^{\text {ord }} \leftrightarrow \mathrm{CAC}$
- $\mathrm{RCA}_{0} \vdash$ SCAC $^{\text {ord }} \leftrightarrow$ SCAC

Coro: $\mathrm{RCA}_{0} \vdash \mathrm{CAC}^{\text {ord }}$ strictly implies SCAC ${ }^{\text {ord }}$.

Theorem (H.)

- CAC $^{\text {ord }} \mathbb{Z}_{c} C A C$
- SCAC $^{\text {ord }} \equiv_{\mathrm{c}}$ SCAC
- SCAC ${ }^{\text {ord }} \not{ }^{\text {w }}$ SCAC
- SCAC ${ }^{\text {ord }} Z_{\mathrm{sc}}$ SCAC

There's always more math to do.

- Separate equivalent unique matching principles with $\leq_{s W}$, etc.
- Find the exact location of MTO in the reverse mathematics Zoo
- Compare ω-ordered posets and weakly stable posets.
- Analyze more mathematics within these frameworks.
- Analyze the frameworks themselves!

References

[1] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions., Arch. Math. Logic 54 (2015), 49-57. DOI 10.1007/s00153-014-0401-z.
[2] , Reverse mathematics and marriage problems with finitely many solutions., Arch. Math. Logic 55 (2016), 1015-1024. DOI 10.1007/s00153-016-0509-4.
[3] Noah A. Hughes, Applications of Computability Theory to Infinitary Combinatorics, PhD Thesis, University of Connecticut (2021).
[4] Denis R. Hirschfeldt, Slicing the truth, Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, vol. 28, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. MR3244278
[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007, MR2517689.

Unique colorings of graphs and hypergraphs - Bonus

 \#1Davis, Hirst, Pardo, and Ransom showed that there is no arithmetic way to determine if a hypergraph has a proper k-coloring.
Theorem (Davis, Hirst, Pardo, and Ransom)
Over $\mathrm{RCA} A_{0}$, the following statement is equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$:

- If $\left\langle H_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of hypergraphs then there is a function $f: \mathbb{N} \rightarrow\{0,1\}$ such that $f(i)=1$ if and only if H_{i} has a proper k-coloring.

Theorem (H.)
Over RCA_{0}, the following statement is equivalent to ATR_{0} :

- If $\left\langle H_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of hypergraphs which admit at most one proper 2-coloring then there is a function $f: \mathbb{N} \rightarrow\{0,1\}$ such that $f(i)=1$ if and only if H_{i} has a proper 2-coloring.

Unique colorings of graphs and hypergraphs - Bonus

 \#1Theorem (with Jeff Hirst)
Over RCA A_{0}, the following statement is equivalent to $A C A_{0}$:

- If $\left\langle G_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of graphs then there is a function $s: \mathbb{N} \rightarrow\{0,1,2\}$ such that

$$
s(i)= \begin{cases}0 & \text { if } G_{i} \text { has no proper 2-coloring } \\ 1 & \text { if } G_{i} \text { has a unique proper 2-coloring } \\ 2 & \text { if } G_{i} \text { has many proper 2-colorings }\end{cases}
$$

Theorem (with Jeff Hirst)
Over RCA_{0}, the following statement is equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$:

- If $\left\langle H_{i}\right\rangle_{i \in \mathbb{N}}$ is a sequence of hypergraphs then there is a function $s: \mathbb{N} \rightarrow\{0,1,2\}$ satisfying (*).

Unique matchings and reverse mathematics Bonus \#2

The enumeration provides a large advantage in the coding potential of these principles.

Theorem (with Jeff Hirst)

Over RCA

1. the statement ETM is provable; and
2. the statement MTE is provably equivalent to ACA_{0}.

Theorem (H.)

1. Over RCA_{0}, the statement OTM is provably equivalent to ACA_{0}; and
2. the statement MTO is provable in $A C A_{0}$.
3. the statement MTO is not provable in
$\mathrm{ACA}_{0} \longleftrightarrow \mathrm{OTM} \longleftrightarrow \mathrm{MTE}$

