Computability Theory and Infinitary Combinatorics

Noah A. Hughes Winston-Salem State University hughesna@wssu.edu — nahughes.github.io

Friday, December 2nd, 2022

Fall 2022 Colloquium Series Department of Mathematical Sciences Appalachian State University

Before I begin speaking,

I'd like to say thanks.

-Credit to Raymond Smullyan for the witticism.

Motivation — Mathematical Logic

From Paul Shafer:

I describe calculus as the mathematics of change[,] geometry as the mathematics of shape, ...[and math] logic as the mathematics of mathematics.

We take mathematical theorems, proofs, and constructions as our objects of study, specifically from infinitary¹ combinatorics.

The goal is to understand the foundational mechanics of mathematics: e.g.,

- discern underlying connections in seemingly disparate mathematical theorems
- determine the necessary ingredients in any proof of a particular theorem.

Computability theory provides a powerful viewpoint from which to conduct this analysis.

¹countably infinite

Reverse Mathematics

Prove results of the form:

Over a weak base theory \mathcal{B} , the axiom A is both necessary and sufficient to prove the familiar theorem ξ .

 $\mathcal{B} \vdash A \iff \xi$

Computability Theoretic Reductions

Reduce the problem of finding one desired mathematical object to finding another object by use of a computable transformation.

Reverse Mathematics

Prove results of the form:

Over a weak base theory \mathcal{B} , the axiom A is both necessary and sufficient to prove the familiar theorem ξ .

ZF set theory \vdash Axiom of Choice \iff Zorn's Lemma

Computability Theoretic Reductions

Reduce the problem of finding one desired mathematical object to finding another object by use of a computable transformation.

Fix an effective enumeration of the partial computable functions on $\ensuremath{\mathbb{N}}$

 $\Phi_0, \Phi_1, \Phi_2, \ldots, \Phi_e, \Phi_{e+1}, \ldots$

A set *C* is *computable* if its characteristic function $\chi_C = \Phi_e$ for some *e*.

The set $\emptyset' = \{e : \Phi_e(e) \text{ halts } \}$ is the canonical noncomputable set.

Given a set $A \subseteq \mathbb{N}$, we *relativize* each Φ_e to Φ_e^A .

Another set *B* is *A*-computable if $\chi_B = \Phi_e^A$ for some *e*.

The set $A' = \{e : \Phi_e^A(e) \text{ halts}\}$ is the canonical set that A cannot compute. We call A' the *Turing jump* of A.

Computable Transformations

We can view each **total** computable function Φ as a *functional* on subsets of \mathbb{N} or $2^{\mathbb{N}}$.

Ex Suppose
$$\Phi^{A} = \chi_{B}$$
 with
 $A = \{2k : k \in \mathbb{Z}\} \text{ and } B = \{p \in \mathbb{Z} : p \text{ is prime}\}$
 $A : \langle 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \dots \rangle$
 \downarrow
 $B : \langle 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, \dots \rangle$

In this way, we can transform a countable ring R (coded in \mathbb{N}) to an infinite binary tree $T = \Phi^R$ (coded in \mathbb{N}).

Interregnum — A combinatorial preview

Posets and Graphs

 $13 \le 10 \le 6 \le 1$; $15 \le 16 \le 2$; 15 and 11 are incomparable ...

Reverse Mathematics with the Big Five

Goal: Determine exactly which axiom(s) are needed in the proof of a (countable analogue of a) particular theorem.

Method: Given a theorem ξ , fix a weak base axiom system \mathcal{B} which cannot prove ξ and find an additional axiom A such that:

$\mathcal{B} \vdash A \to \xi$ a "regular" proof	$\mathcal{B} \vdash \xi ightarrow A$ a "reversed" proof
$ZF \vdash AC \to ZL$ a "regular" proof	$ZF \vdash ZL \to AC$ a "reversed" proof

Traditionally, we use RCA_0 as the base system and require *only four* additional set existence axioms to conduct this analysis.

The Big Five Phenomenon

The Big Five subsystems of Z_2

RCA₀: Axioms for first-order arithmetic, a weak induction principle, and the "recursive comprehension axiom." Algorithmically definable sets exist.

 $\label{eq:ACA_0: RCA_0 + "arithmetical comprehension axiom"} \\ Sets definable with number quantifiers exist.$

 $\label{eq:ATR_0: ACA_0 + (axioms for) "arithmetical transfinite recursion"} Sets definable by recursion on a given countable well-order exist.$

- $\mathsf{RCA}_{\mathbf{0}} \vdash \mathsf{Every}$ countable field has an algebraic closure. \top
- $\mathsf{WKL}_{0} \ \leftrightarrow \ \mathsf{Every} \ \mathsf{countable} \ \mathsf{commutative} \ \mathsf{ring} \ \mathsf{with} \ \mathsf{identity} \\ \mathsf{has} \ \mathsf{a} \ \mathsf{prime} \ \mathsf{ideal}.$
- $\label{eq:ACA_0} \begin{array}{ll} \leftrightarrow & \mbox{Every countable commutative ring with identity} \\ & \mbox{has a maximal ideal.} \end{array}$
- $\begin{array}{rcl} \mathsf{ATR}_0 & \leftrightarrow & \mathsf{UIm's \ theorem: \ Any \ two \ countable \ reduced \ Abelian} \\ & p\mbox{-groups \ which \ the \ same \ UIm \ invariants \ are \ isomorphic.} \end{array}$
- $\label{eq:relation} \begin{array}{rcl} \Pi^1_1\text{-}\mathsf{CA}_0 & \leftrightarrow & \mathsf{Every} \text{ countable Abelian group is the direct sum of} \\ & & \mathsf{a} \text{ divisible group and a reduced group.} \end{array}$

 $\mathsf{RCA}_0 \quad \vdash \quad \mathsf{The \ intermediate \ value \ theorem}.$

T

- $\begin{array}{rcl} \mathsf{WKL}_0 & \leftrightarrow & \mathsf{Heine}/\mathsf{Borel:} \text{ every covering of } [0,1] \text{ with a sequence} \\ & & \mathsf{of open intervals has a finite subcovering.} \end{array}$
- $\begin{array}{rcl} \mathsf{ACA}_0 & \leftrightarrow & \mathsf{Balzano}/\mathsf{Weierstra} \texttt{B}\texttt{: every bounded sequence of} \\ & & \mathsf{real numbers has a convergent subsequence.} \end{array}$
- $\label{eq:antor} \begin{array}{rcl} \Pi^1_1\text{-}\mathsf{CA}_0 & \leftrightarrow & \mathsf{Cantor}/\mathsf{Bendixson} : \ \mathsf{Every} \ \mathsf{closed} \ \mathsf{subset} \ \mathsf{of} \ \mathbb{R}^n \ \mathsf{is} \ \mathsf{the} \ \mathsf{union} \\ & \mathsf{of} \ \mathsf{a} \ \mathsf{countable} \ \mathsf{set} \ \mathsf{and} \ \mathsf{a} \ \mathsf{perfect} \ \mathsf{set}. \end{array}$

- $\begin{array}{rcl} \mathsf{RCA}_{0} & \vdash & \mathsf{Every finite bipartite graph satisfying Hall's condition} \\ \top & & \mathsf{has a perfect matching.} \end{array}$
- $\mathsf{WKL}_{\mathbf{0}} \ \leftrightarrow \ \mathsf{Every\ infinite\ 2-branching\ tree\ has\ an\ infinite\ path.}$
- $\begin{array}{rcl} \mathsf{ACA}_{0} & \leftrightarrow & \mathsf{K\"{o}nig}\text{'s lemma: every infinite finitely-branching tree} \\ & & \mathsf{has an infinite path.} \end{array}$
- $ATR_0 \quad \leftrightarrow \quad Any \text{ two countable well-orders are comparable.}$
- $\Pi^1_1\text{-}\mathsf{CA}_0 \ \ \leftrightarrow \ \ \text{Every tree has a largest perfect subtree}.$

Graphs and hypergraphs in reverse mathematics

A hypergraph H = (V, E) consists of a set $V \subseteq \mathbb{N}$ of vertices and a collection $E = \{e_0, e_1, e_2, ...\} \subseteq \mathcal{P}(V)$ of edges. We say $u, v \in V$ are *adjacent* if $u, v \in e$ for some edge $e \in E$.

A graph G = (V, E) is a hypergraph in which every edge has size 2.

A graph is *bipartite* if $V = X \sqcup Y$ and for every $e \in E$, we have $e \not\subseteq X$ and $e \not\subseteq Y$.

A proper k-coloring of a (hyper)graph is a map $c: V \rightarrow \{0, 1, \dots, k-1\}$ which is nonconstant on every edge $e \in E$.

Fact: A graph G is bipartite if and only if there exists a proper 2-coloring of G.

Graphs and hypergraphs in reverse mathematics

A hypergraph H = (V, E) consists of a set $V \subseteq \mathbb{N}$ of vertices and a collection $E = \{e_0, e_1, e_2, ...\} \subseteq \mathcal{P}(V)$ of edges. We say $u, v \in V$ are *adjacent* if $u, v \in e$ for some edge $e \in E$.

A graph G = (V, E) is a hypergraph in which every edge has size 2.

A graph is *bipartite* if $V = X \sqcup Y$ and for every $e \in E$, we have $e \not\subseteq X$ and $e \not\subseteq Y$.

A proper k-coloring of a (hyper)graph is a map $c: V \rightarrow \{0, 1, \dots, k-1\}$ which is nonconstant on every edge $e \in E$.

Fact: A graph G is bipartite if and only if there exists a proper 2-coloring of G.

Unique matchings

A matching of a bipartite graph $G = (X \cup Y, E)$ is an injection $f: X \to Y$ such that $\{x, f(x)\} \in E$ for all $x \in X$.

We use A(x) to denote the set of vertices adjacent to x: $A(x) = \{y : \{x, y\} \in E\}$. The size of A(x) is the *degree* of x.

A graph G = (V, E) is *locally finite* if A(x) is finite for all $x \in V$.

Theorem (with Jeff Hirst)

A locally finite bipartite graph $G = (X \cup Y, E)$ has a unique matching if and only if there is an enumeration $\langle x_i \rangle_{i \in \mathbb{N}}$ of the vertices in X such that for all n:

$$|A(x_0, x_1, \ldots, x_n)| = n+1.$$

Theorem

A bipartite graph $G = (X \cup Y, E)$ has a unique matching if and only if there is a well-order (X, \preceq) such that for every $x \in X$ there is a unique $y \in Y$ with

$$A(x) - A(\{x' : x' \prec x\}) = \{y\}.$$

Theorem (with Jeff Hirst)

A locally finite bipartite graph $G = (X \cup Y, E)$ has a unique matching if and only if there is an enumeration $\langle x_i \rangle_{i \in \mathbb{N}}$ of the vertices in X such that for all n:

$$|A(x_0, x_1, \ldots, x_n)| = n+1.$$

Let $\ensuremath{\mathsf{MTE}}$ denote the "only if" direction and ETM denote the "if" direction.

Theorem (H.)

A bipartite graph $G = (X \cup Y, E)$ has a unique matching if and only if there is a well-order (X, \leq_X) such that for every $x \in X$ there is a unique $y \in Y$ with

$$A(x) - A(\{x' : x' \prec x\}) = \{y\}.$$

Let $\ensuremath{\mathsf{MTO}}$ denote the "only if" direction and OTM denote the "if" direction.

Unique matchings and reverse mathematics

The enumeration provides a coding advantage when proving reversals.

Theorem (with Jeff Hirst)

Over RCA₀,

- 1. the statement ETM is provable; and
- 2. the statement MTE is provably equivalent to ACA₀.

Theorem (H.)

- 1. Over RCA₀, the statement OTM is provably equivalent to ACA₀; and
- 2. the statement MTO is provable in ACA₀.
- 3. the statement MTO is not provable in WKL₀.

Picture #1 of Reverse Math: The Big Five

subsets of \mathbb{N} .

$\label{eq:Ramsey's Theorem} \mbox{Let } [\mathbb{N}]^n \mbox{ denote the set of all } n\mbox{-element}$

Call $c : [\mathbb{N}]^n \to k = \{0, 1, 2, \dots, k-1\}$ a *k*-coloring of $[\mathbb{N}]^n$.

 \mathbf{RT}_{k}^{n} : Every *k*-coloring of $[\mathbb{N}]^{k}$ has an infinite homogeneous set *H*.

 $Ex \rightarrow RT_2^1$ is the Pigeonhole Principle.

► RT₂² states every infinite graph contains an infinite clique or anticlique.

Note: the combinatorial subtleties of RT_k^n collapse for $n \ge 3$ and $k \ge 2$.

Picture #2 of Reverse Math: The Zoo

Ramsey's Theorem Let $[\mathbb{N}]^n$ denote the set of all *n*-element subsets of \mathbb{N} .

Call $c : [\mathbb{N}]^n \to k = \{0, 1, 2, \dots, k-1\}$ a *k*-coloring of $[\mathbb{N}]^n$.

RTⁿ_k: Every *k*-coloring of $[\mathbb{N}]^k$ has an infinite homogeneous set *H*.

EX \triangleright RT¹₂ is the Pigeonhole Principle.

► RT₂² states every infinite graph contains an infinite clique or anticlique.

Note: the combinatorial subtleties of RT_k^n collapse for $n \ge 3$ and $k \ge 2$.

Picture #2 of Reverse Math: The Zoo

Computability Theoretic Reductions

We recast a mathematical theorem as a *formal problem* P made up of instances X and associated solutions Y.

For example:

- ▶ MI: The problem whose instances *R* are countable rings with identity with solutions *M* which are maximal ideals in *R*.
- RT₂³: The problem whose instances c are 2-colorings of [ℕ]³ with solutions H which are homogeneous with respect to c.

Four Reductions — Uniform vs. Non-uniform

A finer analysis

Seemingly different combinatorial principles that are equivalent in the reverse mathematics setting can often be distinguished using these reductions.

Showing P is *not* reducible to Q under one of these reductions reveals precise differences that reverse mathematics may obfuscate, e.g. whether or not there is a

uniform proof of P from Q.

$$\begin{aligned} \mathsf{RCA}_0 \vdash \mathsf{RT}_2^3 \leftrightarrow \mathsf{RT}_2^4 \\ \mathsf{RCA}_0 \vdash \mathsf{RT}_{\mathsf{i}}^{\mathsf{n}} \leftrightarrow \mathsf{RT}_{\mathsf{k}}^{\mathsf{n}}, \ n \geq 1, \ k > j \geq 2 \end{aligned}$$

 $\begin{array}{l} \mathsf{R}\mathsf{T}_2^3 \nleq_\mathsf{W} \mathsf{R}\mathsf{T}_2^4 \\ \mathsf{R}\mathsf{T}_i^n \nleq_\mathsf{W} \mathsf{R}\mathsf{T}_k^n \end{array}$

Posets and Dilworth's Theorem

A partially ordered set (*poset*) is a pair (P, \leq_P) where \leq_P is a reflexive, transitive, and antisymmetric relation on $P \subseteq \omega$.

We say $X \subseteq P$ is:

▶ a *chain* if for all $x, y \in X$, either $x \leq_P y$ or $y \leq_P x$. (1)

5

6

8

▶ an *antichain* if for all $x, y \in X$, we have $x \not\leq_P y$ and $y \not\leq_P x$.

Theorem (Dilworth's theorem)

In any finite poset (P, \leq_P) , the size of the largest antichain equals the minimum number of chains needed to cover P.

Theorem (CAC: Chain-Antichain Theorem)

If (P, \leq_P) is an infinite poset, then P contains either an infinite chain or an infinite antichain.

Stable and ω -ordered posets

We say an element $x \in P$ is

- small if $x \leq_P y$ for all but finitely many $y \in P$
- large if $y \leq_P x$ for all but finitely many $y \in P$
- ▶ isolated if $x |_P y$ for all but finitely many $y \in P$

```
We say a poset (P, \leq_P) is
```

► stable if every x ∈ P is either small or isolated, or every x ∈ P is either large or isolated.

ω-ordered if for all x, y ∈ P, we have x ≤_P y implies x ≤ y in ω.

Let SCAC be the restriction of CAC to stable posets; CAC^{ord} be the restriction of CAC to ω -ordered posets; and SCAC^{ord} be the restriction of CAC to stable

 $\omega\text{-ordered}$ posets.

Chains and antichains

Theorem (Hirschfeldt and Shore) RCA₀ \vdash CAC *strictly implies* SCAC.

Theorem (H.)

- $\blacktriangleright \mathsf{RCA}_0 \vdash \mathsf{CAC}^{\mathsf{ord}} \leftrightarrow \mathsf{CAC}$
- $\blacktriangleright \mathsf{RCA}_0 \vdash \mathsf{SCAC}^{\mathsf{ord}} \leftrightarrow \mathsf{SCAC}$
- Coro: $RCA_0 \vdash CAC^{ord}$ strictly implies $SCAC^{ord}$.

Theorem (H.)

- ► $CAC^{ord} \not\leq_{c} CAC$
- $\blacktriangleright SCAC^{ord} \equiv_{c} SCAC$
- ► SCAC^{ord} ≰_W SCAC
- ► SCAC^{ord} ≰_{sc} SCAC

There's always more math to do.

• Separate equivalent unique matching principles with \leq_{sW} , etc.

▶ Find the exact location of MTO in the reverse mathematics Zoo

• Compare ω -ordered posets and *weakly stable* posets.

Analyze more mathematics within these frameworks.

Analyze the frameworks themselves!

References

- Jeffry L. Hirst and Noah A. Hughes, *Reverse mathematics and marriage problems with unique solutions.*, Arch. Math. Logic 54 (2015), 49-57. DOI 10.1007/s00153-014-0401-z.
- [2] _____, Reverse mathematics and marriage problems with finitely many solutions., Arch. Math. Logic 55 (2016), 1015-1024. DOI 10.1007/s00153-016-0509-4.
- [3] Noah A. Hughes, *Applications of Computability Theory to Infinitary Combinatorics*, PhD Thesis, University of Connecticut (2021).

- [4] Denis R. Hirschfeldt, *Slicing the truth*, Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, vol. 28, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. MR3244278
- [5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007, MR2517689.

Thank you for your attention!

Unique colorings of graphs and hypergraphs - Bonus #1

Davis, Hirst, Pardo, and Ransom showed that there is no arithmetic way to determine if a hypergraph has a proper *k*-coloring.

Theorem (Davis, Hirst, Pardo, and Ransom)

Over RCA₀, the following statement is equivalent to Π_1^1 -CA₀:

If ⟨H_i⟩_{i∈ℕ} is a sequence of hypergraphs then there is a function f: ℕ → {0,1} such that f(i) = 1 if and only if H_i has a proper k-coloring.

Theorem (H.)

Over RCA_0 , the following statement is equivalent to ATR_0 :

If ⟨H_i⟩_{i∈ℕ} is a sequence of hypergraphs which admit at most one proper 2-coloring then there is a function f: ℕ → {0,1} such that f(i) = 1 if and only if H_i has a proper 2-coloring.

Unique colorings of graphs and hypergraphs - Bonus #1

Theorem (with Jeff Hirst)

Over RCA_0 , the following statement is equivalent to ACA_0 :

If (G_i)_{i∈ℕ} is a sequence of graphs then there is a function
 s: ℕ → {0,1,2} such that

$$s(i) = \begin{cases} 0 & \text{if } G_i \text{ has no proper 2-coloring} \\ 1 & \text{if } G_i \text{ has a unique proper 2-coloring} \\ 2 & \text{if } G_i \text{ has many proper 2-colorings} \end{cases}$$
(*)

Theorem (with Jeff Hirst)

Over RCA₀, the following statement is equivalent to Π_1^1 -CA₀:

If ⟨H_i⟩_{i∈ℕ} is a sequence of hypergraphs then there is a function s : ℕ → {0,1,2} satisfying (*).

Unique matchings and reverse mathematics — Bonus #2

The enumeration provides a large advantage in the coding potential of these principles.

Theorem (with Jeff Hirst)

Over RCA0,

- 1. the statement ETM is provable; and
- 2. the statement MTE is provably equivalent to ACA₀.

Theorem (H.)

- 1. Over RCA₀, the statement OTM is provably equivalent to ACA₀; and
- 2. the statement MTO is provable in ACA₀.
- 3. the statement MTO is not provable in

