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Before I begin speaking,

I’d like to say thanks.

–Credit to Raymond Smullyan for the witticism.



Motivation — Mathematical Logic
From Paul Shafer:

I describe calculus as the mathematics of change[,]
geometry as the mathematics of shape,
…[and math] logic as the mathematics of mathematics.

We take mathematical theorems, proofs, and constructions as our
objects of study, specifically from infinitary1 combinatorics.

The goal is to understand the foundational mechanics of mathematics:
e.g.,
▶ discern underlying connections in seemingly disparate mathematical

theorems
▶ determine the necessary ingredients in any proof of a particular

theorem.

Computability theory provides a powerful viewpoint from which to
conduct this analysis.

1countably infinite



Two Frameworks
Reverse Mathematics

Prove results of the form:
Over a weak base theory B, the axiom A is both necessary and
sufficient to prove the familiar theorem ξ.

B ⊢ A ⇐⇒ ξ

Computability Theoretic Reductions
Reduce the problem of finding one desired mathematical object to
finding another object by use of a computable transformation.

X − Φ→ X̂
commutative ring, R infinite binary tree, T

... ...
Y ← Ψ − Ŷ

prime ideal, P infinite path, f



Two Frameworks
Reverse Mathematics

Prove results of the form:
Over a weak base theory B, the axiom A is both necessary and
sufficient to prove the familiar theorem ξ.

ZF set theory ⊢ Axiom of Choice ⇐⇒ Zorn’s Lemma

Computability Theoretic Reductions
Reduce the problem of finding one desired mathematical object to
finding another object by use of a computable transformation.

X − Φ→ X̂
commutative ring, R infinite binary tree, T

... ...
Y ← Ψ − Ŷ

prime ideal, P infinite path, f



Essentials of Computability Theory

Fix an effective enumeration of the partial computable
functions on N

Φ0,Φ1,Φ2, . . . ,Φe,Φe+1, . . .

A set C is computable if its characteristic function
χC = Φe for some e.
The set ∅′ = {e : Φe(e) halts } is the canonical
noncomputable set.

Given a set A ⊆ N, we relativize each Φe to ΦA
e .

Another set B is A-computable if χB = ΦA
e for some e.

The set A′ = {e : ΦA
e (e) halts} is the canonical set that A

cannot compute. We call A′ the Turing jump of A.

...

∅(n)

...

∅′′

∅′

∅



Computable Transformations

We can view each total computable function Φ as a functional on
subsets of N or 2N.

Ex Suppose ΦA = χB with

A = {2k : k ∈ Z} and B = {p ∈ Z : p is prime}

A : ⟨1, 0, 1, 0, 1, 0,1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . ⟩
|
Φ

↓
B : ⟨0, 0, 1, 1, 0, 1,0, 1, 0, 0, 0, 1, 0, 1, 0, 0, . . . ⟩

In this way, we can transform a countable ring R (coded in N) to an
infinite binary tree T = ΦR (coded in N).



Interregnum — A combinatorial preview

Posets and Graphs

1 2 3 4 5 17 18 21

6 16 7 8 9 19 22

10 15 11 12 20

13 14 23

13 ≤ 10 ≤ 6 ≤ 1; 15 ≤ 16 ≤ 2; 15 and 11 are incomparable . . .



Reverse Mathematics with the Big Five

Goal: Determine exactly which axiom(s) are needed in the proof of a
(countable analogue of a) particular theorem.
Method: Given a theorem ξ, fix a weak base axiom system B which
cannot prove ξ and find an additional axiom A such that:

B ⊢ A→ ξ B ⊢ ξ → A
a “regular” proof a “reversed” proof

ZF ⊢ AC→ ZL ZF ⊢ ZL→ AC
a “regular” proof a “reversed” proof

Traditionally, we use RCA0 as the base system and require only four
additional set existence axioms to conduct this analysis.

The Big Five Phenomenon



The Big Five subsystems of Z2

RCA0: Axioms for first-order arithmetic, a weak induction
principle, and the “recursive comprehension axiom.”

Algorithmically definable sets exist.

WKL0: RCA0 + weak Kőnig’s lemma
Every infinite binary tree has an infinite path.

ACA0: RCA0 + “arithmetical comprehension axiom”
Sets definable with number quantifiers exist.

ATR0: ACA0 + (axioms for) “arithmetical transfinite recursion”
Sets definable by recursion on a given countable well-order exist.

Π1
1-CA0: ACA0 + “Π1

1 comprehension axiom”
Sets definable with one universal set quantifier exist.



The Big Five Phenomenon in Algebra

RCA0 ⊢ Every countable field has an algebraic closure.
⊤

WKL0 ↔ Every countable commutative ring with identity
has a prime ideal.

ACA0 ↔ Every countable commutative ring with identity
has a maximal ideal.

ATR0 ↔ Ulm’s theorem: Any two countable reduced Abelian
p-groups which the same Ulm invariants are isomorphic.

Π1
1-CA0 ↔ Every countable Abelian group is the direct sum of

a divisible group and a reduced group.



The Big Five Phenomenon in Analysis

RCA0 ⊢ The intermediate value theorem.
⊤

WKL0 ↔ Heine/Borel: every covering of [0, 1] with a sequence
of open intervals has a finite subcovering.

ACA0 ↔ Balzano/Weierstraß: every bounded sequence of
real numbers has a convergent subsequence.

ATR0 ↔ Perfect set theorem: every uncountable closed set
has a perfect subset.

Π1
1-CA0 ↔ Cantor/Bendixson: Every closed subset of Rn is the union

of a countable set and a perfect set.



The Big Five Phenomenon in Combinatorics

RCA0 ⊢ Every finite bipartite graph satisfying Hall’s condition
⊤ has a perfect matching.

WKL0 ↔ Every infinite 2-branching tree has an infinite path.

ACA0 ↔ Kőnig’s lemma: every infinite finitely-branching tree
has an infinite path.

ATR0 ↔ Any two countable well-orders are comparable.

Π1
1-CA0 ↔ Every tree has a largest perfect subtree.



Graphs and hypergraphs in reverse mathematics
A hypergraph H = (V,E) consists of a set V ⊆ N of vertices and a
collection E = {e0, e1, e2, . . . } ⊆ P(V) of edges.
We say u, v ∈ V are adjacent if u, v ∈ e for some edge e ∈ E.
A graph G = (V,E) is a hypergraph in which every edge has size 2.

A graph is bipartite if V = X ⊔ Y and for every e ∈ E, we have e ̸⊆ X
and e ̸⊆ Y.
A proper k-coloring of a (hyper)graph is a map
c : V→ {0, 1, . . . , k− 1} which is nonconstant on every edge e ∈ E.
Fact: A graph G is bipartite if and only if there exists a proper
2-coloring of G.
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Unique matchings
A matching of a bipartite graph G = (X∪Y,E) is an injection f : X→ Y
such that {x, f(x)} ∈ E for all x ∈ X.
We use A(x) to denote the set of vertices adjacent to x:
A(x) = {y : {x, y} ∈ E}. The size of A(x) is the degree of x.
A graph G = (V,E) is locally finite if A(x) is finite for all x ∈ V.
Theorem (with Jeff Hirst)
A locally finite bipartite graph G = (X ∪ Y,E) has a unique matching if
and only if there is an enumeration ⟨xi⟩i∈N of the vertices in X such that
for all n:

|A(x0, x1, . . . , xn)| = n + 1.
Theorem
A bipartite graph G = (X ∪ Y,E) has a unique matching if and only if
there is a well-order (X,⪯) such that for every x ∈ X there is a unique
y ∈ Y with

A(x)− A({x′ : x′ ≺ x}) = {y}.



Unique matchings

Theorem (with Jeff Hirst)
A locally finite bipartite graph G = (X ∪ Y,E) has a unique matching if
and only if there is an enumeration ⟨xi⟩i∈N of the vertices in X such that
for all n:

|A(x0, x1, . . . , xn)| = n + 1.

Let MTE denote the “only if” direction and ETM denote the “if”
direction.
Theorem (H.)
A bipartite graph G = (X ∪ Y,E) has a unique matching if and only if
there is a well-order (X,≤X) such that for every x ∈ X there is a unique
y ∈ Y with

A(x)− A({x′ : x′ ≺ x}) = {y}.

Let MTO denote the “only if” direction and OTM denote the “if”
direction.



Unique matchings and reverse mathematics

The enumeration provides a coding advantage when proving reversals.

Theorem (with Jeff Hirst)
Over RCA0,

1. the statement ETM is provable; and
2. the statement MTE is provably

equivalent to ACA0.

Theorem (H.)
1. Over RCA0, the statement OTM is

provably equivalent to ACA0; and
2. the statement MTO is provable in

ACA0.
3. the statement MTO is not provable in

WKL0.

ACA0 OTM MTE

MTO

WKL0

RCA0 ETM

?

/



Picture #1 of Reverse Math: The Big Five

Π1
1-CA0

ATR0

ACA0 RTn≥3
k≥2

WKL0 RT2
2

RCA0

Ramsey’s Theorem
Let [N]n denote the set of all n-element
subsets of N.
Call c : [N]n → k = {0, 1, 2, . . . , k− 1}
a k-coloring of [N]n.

RTn
k: Every k-coloring of [N]k has an infinite

homogeneous set H.

Ex ▶ RT1
2 is the Pigeonhole Principle.

▶ RT2
2 states every infinite graph contains an

infinite clique or anticlique.

Note: the combinatorial subtleties of RTn
k collapse for n ≥ 3 and k ≥ 2.



Picture #2 of Reverse Math: The Zoo
Π1
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ACA0 RTn≥3
k≥2
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RCA0

Ramsey’s Theorem
Let [N]n denote the set of all n-element
subsets of N.
Call c : [N]n → k = {0, 1, 2, . . . , k− 1}
a k-coloring of [N]n.

RTn
k: Every k-coloring of [N]k has an infinite

homogeneous set H.

Ex ▶ RT1
2 is the Pigeonhole Principle.

▶ RT2
2 states every infinite graph contains an

infinite clique or anticlique.

Note: the combinatorial subtleties of RTn
k collapse for n ≥ 3 and k ≥ 2.



Picture #2 of Reverse Math: The Zoo
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Computability Theoretic Reductions
We recast a mathematical theorem as a formal problem P made up of
instances X and associated solutions Y.
For example:
▶ MI: The problem whose instances R are countable rings with

identity with solutions M which are maximal ideals in R.
▶ RT3

2: The problem whose instances c are 2-colorings of [N]3 with
solutions H which are homogeneous with respect to c.

Problems P ≤sW Q

Instances X − Φ→ X̂
commutative ring, R 2-coloring of [N]3, c

... ...... ...
Solutions Y ← Ψ − Ŷ

maximal ideal, M homogeneous set, H



Four Reductions — Uniform vs. Non-uniform

P ≤sW Q

X X̂

Y Ŷ

Φ

ΨŶ

P ≤sc Q

X X̂

Y Ŷ

computes

Ŷ computes

P ≤W Q

X X̂

Y Ŷ

Φ

ΨX⊕Ŷ

P ≤c Q

X X̂

Y Ŷ

computes

X⊕Ŷ computes



A finer analysis

Seemingly different combinatorial
principles that are equivalent in the
reverse mathematics setting can
often be distinguished using these
reductions.
Showing P is not reducible to Q
under one of these reductions
reveals precise differences that
reverse mathematics may obfuscate,
e.g. whether or not there is a
uniform proof of P from Q.

P ≤sW Q

P ≤sc Q P ≤W Q

P ≤c Q

RCA ⊢ Q→ P

RCA0 ⊢ RT3
2 ↔ RT4

2 RT3
2 ≰W RT4

2

RCA0 ⊢ RTn
j ↔ RTn

k, n ≥ 1, k > j ≥ 2 RTn
j ≰W RTn

k



Posets and Dilworth’s Theorem

A partially ordered set (poset) is a pair (P,≤P) where
≤P is a reflexive, transitive, and antisymmetric
relation on P ⊆ ω.
We say X ⊆ P is:
▶ a chain if for all x, y ∈ X, either x ≤P y or y ≤P x.
▶ an antichain if for all x, y ∈ X, we have x ̸≤P y

and y ̸≤P x.

Theorem (Dilworth’s theorem)
In any finite poset (P,≤P), the size of the largest
antichain equals the minimum number of chains
needed to cover P.

Theorem (CAC: Chain-Antichain Theorem )
If (P,≤P) is an infinite poset, then P contains either
an infinite chain or an infinite antichain.

1 4 5 6

9 3 8

2 7

10



Stable and ω-ordered posets
We say an element x ∈ P is
▶ small if x ≤P y for all but finitely many y ∈ P
▶ large if y ≤P x for all but finitely many y ∈ P
▶ isolated if x |P y for all but finitely many y ∈ P

We say a poset (P,≤P) is
▶ stable if every x ∈ P is either small or isolated, or

every x ∈ P is either large or isolated.
▶ ω-ordered if for all x, y ∈ P, we have x ≤P y

implies x ≤ y in ω.

Let SCAC be the restriction of CAC to stable posets;
CACord be the restriction of CAC to ω-ordered

posets; and
SCACord be the restriction of CAC to stable

ω-ordered posets.

9 4 5 10

1 3 8

2 7

6



Chains and antichains

Theorem (Hirschfeldt and Shore)
RCA0 ⊢ CAC strictly implies SCAC.

Theorem (H.)
▶ RCA0 ⊢ CACord ↔ CAC
▶ RCA0 ⊢ SCACord ↔ SCAC

Coro: RCA0 ⊢ CACord strictly implies
SCACord.

Theorem (H.)
▶ CACord ̸≤c CAC
▶ SCACord ≡c SCAC
▶ SCACord ̸≤W SCAC
▶ SCACord ̸≤sc SCAC

P ≤sW Q

P ≤sc Q P ≤W Q

P ≤c Q

RCA ⊢ Q→ P



There’s always more math to do.

▶ Separate equivalent unique matching principles with ≤sW, etc.

▶ Find the exact location of MTO in the reverse mathematics Zoo

▶ Compare ω-ordered posets and weakly stable posets.

▶ Analyze more mathematics within these frameworks.

▶ Analyze the frameworks themselves!
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Unique colorings of graphs and hypergraphs - Bonus
#1

Davis, Hirst, Pardo, and Ransom showed that there is no arithmetic way
to determine if a hypergraph has a proper k-coloring.
Theorem (Davis, Hirst, Pardo, and Ransom)
Over RCA0, the following statement is equivalent to Π1

1-CA0:
▶ If ⟨Hi⟩i∈N is a sequence of hypergraphs then there is a function

f : N→ {0, 1} such that f(i) = 1 if and only if Hi has a proper
k-coloring.

Theorem (H.)
Over RCA0, the following statement is equivalent to ATR0:
▶ If ⟨Hi⟩i∈N is a sequence of hypergraphs which admit at most one

proper 2-coloring then there is a function f : N→ {0, 1} such that
f(i) = 1 if and only if Hi has a proper 2-coloring.



Unique colorings of graphs and hypergraphs - Bonus
#1

Theorem (with Jeff Hirst)
Over RCA0, the following statement is equivalent to ACA0:
▶ If ⟨Gi⟩i∈N is a sequence of graphs then there is a function

s : N→ {0, 1, 2} such that

s(i) =


0 if Gi has no proper 2-coloring
1 if Gi has a unique proper 2-coloring
2 if Gi has many proper 2-colorings

(∗)

Theorem (with Jeff Hirst)
Over RCA0, the following statement is equivalent to Π1

1-CA0:
▶ If ⟨Hi⟩i∈N is a sequence of hypergraphs then there is a function

s : N→ {0, 1, 2} satisfying (∗).



Unique matchings and reverse mathematics —
Bonus #2

The enumeration provides a large advantage in the coding potential of
these principles.

Theorem (with Jeff Hirst)
Over RCA0,

1. the statement ETM is provable; and
2. the statement MTE is provably

equivalent to ACA0.

Theorem (H.)
1. Over RCA0, the statement OTM is

provably equivalent to ACA0; and
2. the statement MTO is provable in

ACA0.
3. the statement MTO is not provable in

WKL0.

ACA0 OTM MTE

MTO

Ext(ω∗)

WKL0

RCA0 ETM

?

?

/
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