## Generalizations of Hall's theorem in reverse mathematics

Noah A. Hughes
University of Connecticut
noah.hughes@uconn.edu

Monday, 8th July, 2019

IMS Graduate Summer School in Logic

## Reverse mathematics: the motivation

The central question: What is the appropriate axiomatization of a given fragment of (countable) mathematics?

## Reverse mathematics: the method

Let $\equiv=\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right\}$ be some fragment of mathematics and $\mathcal{B}$ an axiom system too weak to prove $\overline{\text { 末. }}$

Determine an addiontal axiom $\mathcal{A}$ outside of $\mathcal{B}$ such that

$$
\mathcal{B} \vdash \mathcal{A} \leftrightarrow \xi_{i} \quad \text { for } 0 \leq i \leq n
$$

Then $\mathcal{B}+\mathcal{A}$ is a necessary and sufficient axiomatization of $\equiv$.

$$
\begin{gathered}
\quad \mathcal{B} \vdash \mathcal{A} \rightarrow \xi_{i} \\
\text { a "regular" proof }
\end{gathered}
$$

$$
\mathcal{B} \vdash \xi_{i} \rightarrow \mathcal{A}
$$

a "reversed" proof

## Reverse mathematics: the setting

We consider five subsystems of second-order arithmetic.
The base system $\mathrm{RCA}_{0}$ consists of axioms for arithmetic, induction for $\Sigma_{1}^{0}$ formula, and set comprehension for $\Delta_{1}^{0}$ formula.

The system $W_{K L}$ consists of $\mathrm{RCA}_{0}$ plus weak König's lemma:

Every infinite binary tree has an infinite path.
The system $A C A_{0}$ consists of $R C A_{0}$ plus axioms for set comprehension for all arithmetical formula.

The system $A T R_{0}$ consists of $A C A_{0}$ plus axioms for iterating arithmetical set comprehension along any (countable) well-order.

The system $\Pi_{1}^{1}-C A_{0}$ consists of $A C A_{0}$ plus axioms for set comprehension for $\Pi_{1}^{1}$ formula.

## Reverse mathematics: the "big five"

RCA $A_{0}$ arithmetic, $\Sigma_{1}^{0}$-induction, recursive comprehension
$W K L_{0}: \quad R C A_{0}+$ "every infinite binary tree has an infinite path"
$A C A_{0}: \quad R C A_{0}+$ comprehension for arithmetical formulas

ATR ${ }_{0}: \quad$ ACA $_{0}+$ iterability of arithmetical operators along any well-order
$\Pi_{1}^{1}-\mathrm{CA}_{0}: \quad \mathrm{ACA}_{0}+$ comprehension for $\Pi_{1}^{1}$ formulas

## Reverse mathematics: the "big five" in context

$\mathrm{RCA}_{0} \quad \vdash$ the intermediate value theorem
T
$W_{K L} L_{0} \quad \leftrightarrow \quad$ the Heine/Borel covering lemma;
$\mathrm{ACA}_{0} \quad \leftrightarrow$ the Bolzano/Weierstaß theorem;

ATR $_{0} \quad \leftrightarrow \quad$ the perfect set theorem;
$\Pi_{1}^{1}-\mathrm{CA}_{0} \leftrightarrow$ the Cantor/Bendixson theorem.

$$
: 9:
$$

## Matching problems: the formalization

A matching problem is a triple $P=(A, B, R)$ where $A, B \subseteq \mathbb{N}$ and $R \subseteq A \times B$.

If $(a, b) \in R$ we say $b$ is a permissable match of $a$ and set $R(a)=\{b:(a, b) \in R\}$.

A solution to a matching problem is an injection $f: A \rightarrow B$ such that $f(a) \in R(a)$ for all $a \in A$.


$$
\begin{aligned}
& A=\{0,1,2\} \\
& B=\{3,4,5,6\} \\
& R=\{(0,3),(0,4),(1,4),(2,5),(2,6)\} \\
& f_{1}=\left\{\begin{array}{l}
0 \mapsto 3 \\
1 \mapsto 4 \\
2 \mapsto 5
\end{array} \quad f_{2}=\left\{\begin{array}{l}
0 \mapsto 3 \\
1 \mapsto 4 \\
2 \mapsto 6
\end{array}\right.\right.
\end{aligned}
$$

## Matching problems: Hall's theorem

Theorem (Philip Hall)
Let $P=(A, B, R)$ be a matching problem in which $A$ is finite and every element has finitely many permissable matches. If $\left|A_{0}\right| \leq\left|R\left(A_{0}\right)\right|$ for every $A_{0} \subseteq A$, then $P$ has a solution.

## Theorem (Marshall Hall)

Let $P=(A, B, R)$ be a matching problem in which every element has finitely many permissable matches. If $\left|A_{0}\right| \leq\left|R\left(A_{0}\right)\right|$ for every $A_{0} \subseteq A$, then $P$ has a solution.

## Theorem (Hirst)

The following are provable in $\mathrm{RCA}_{0}$

1. Philip Hall's theorem
2. $\mathrm{ACA}_{0} \leftrightarrow$ Marshall Hall's theorem

## Matching problems: unique matchings

Theorem (Hirst, Hughes)
A matching problem $P=(A, B, R)$, in which every element has finitely many permissable matches, has a unique solution if and only if there is an enumeration of $A$, say $\left\langle a_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|R\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right|=n$.


Theorem (Hirst, Hughes)
Over $\mathrm{RCA}_{0}$, the following are equivalent

1. $\mathrm{ACA}_{0}$
2. The above theorem

## Matching problems: many (possible) matches

Consider matching problems in which any element may have infinitely many permissable matches.

## Theorem

A matching problem $P=(A, B, R)$ has a unique solution if and only if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

Label the forward direction STO and the reverse direction OTS.

## Conjecture (Hirst)

Over RCA

1. $\mathrm{ATR}_{0}$ is provably equivalent to STO
2. and $\mathrm{ACA}_{0}$ is provably equivalent to OTS.

## Current results: a partial answer

## Theorem (Hughes)

Over $\mathrm{RCA}_{0}$, the following are equivalent

1. $A C A_{0}$
2. OTS: A matching problem $P=(A, B, R)$ has a unique solution if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

## Theorem (Hughes)

The following is provable in $\mathrm{ATR}_{0}$ :
STO: A matching problem $P=(A, B, R)$ has a unique solution only if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying $R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\}$.

## Current results: an equivalence to $\mathrm{ACA}_{0}$

## Theorem (Hughes)

Over $\mathrm{RCA}_{0}$, the following are equivalent

1. $\mathrm{ACA}_{0}$
2. OTS: A matching problem $P=(A, B, R)$ has a unique solution if there is a well-order $\left(A, \leq_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime} \leq_{A} a\right\}\right)=\{b\}
$$

Proof: To show (1) implies (2), we are given a matching problem and appropriate well-order and we arithemetically define the unique solution.

$$
(a, b) \in f \leftrightarrow\left[(a, b) \in R \wedge \forall a^{\prime}\left(a^{\prime}<_{A} a \rightarrow(a, b) \notin R\right)\right] .
$$

## Current results: an equivalence to $\mathrm{ACA}_{0}$

## Lemma (Simpson)

Over $\mathrm{RCA}_{0}$, the following are equivalent

1. $\mathrm{ACA}_{0}$
2. For any injection $g: \mathbb{N} \rightarrow \mathbb{N}$

$$
\exists X \forall y(y \in X \leftrightarrow \exists x f(x)=y)
$$

that is, the range of $g$ exists.
Thus, to show

$$
\mathrm{RCA}_{0} \vdash \mathrm{OTS} \rightarrow \mathrm{ACA}_{0}
$$

we instead show

$$
\mathrm{RCA}_{0} \vdash \mathrm{OTS} \rightarrow \text { Item } 2 \leftrightarrow \mathrm{ACA}_{0} .
$$

## Current results: an equivalence to $\mathrm{ACA}_{0}$

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary injection. (e.g. $g(4)=1$ )
Construct a matching problem $P=(A, B, R)$ and well-order $\left(A,<_{A}\right)$ as follows:
$A=B=\mathbb{N}$ and build $R$ in stages:
at stage $2 s$ add $(2 s, 2 s)$ to $R$,
at stage $2 s+1$. check if $m \leq 2 s$ is in $\operatorname{ran}(g)$ : if so add $(2 m, 2 s+1),(2 s+1,2 m)$ to $R$. If not, add $(2 s+1,2 s+1)$ to $R$.


$$
0<_{A} 1 \quad<_{A} 2<_{A} 3
$$

## Current results: an equivalence to $\mathrm{ACA}_{0}$

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary injection. (e.g. $g(4)=1$ )
Construct a matching problem $P=(A, B, R)$ and well-order $\left(A,<_{A}\right)$ as follows:
$A=B=\mathbb{N}$ and build $R$ in stages:
at stage $2 s$ add $(2 s, 2 s)$ to $R$,
at stage $2 s+1$. check if $m \leq 2 s$ is in $\operatorname{ran}(g)$ : if so add $(2 m, 2 s+1),(2 s+1,2 m)$ to $R$. If not, add $(2 s+1,2 s+1)$ to $R$.


## Current results: an equivalence to $\mathrm{ACA}_{0}$

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary injection. (e.g. $g(4)=1$ )
Construct a matching problem $P=(A, B, R)$ and well-order $\left(A,<_{A}\right)$ as follows:
$A=B=\mathbb{N}$ and build $R$ in stages:
at stage $2 s$ add $(2 s, 2 s)$ to $R$,
at stage $2 s+1$. check if $m \leq 2 s$ is in $\operatorname{ran}(g)$ : if so add $(2 m, 2 s+1),(2 s+1,2 m)$ to $R$. If not, add $(2 s+1,2 s+1)$ to $R$.


## Current results: an equivalence to $\mathrm{ACA}_{0}$

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary injection. (e.g. $g(4)=1$ )
Construct a matching problem $P=(A, B, R)$ and well-order $\left(A,<_{A}\right)$ as follows:
$A=B=\mathbb{N}$ and build $R$ in stages:
at stage $2 s$ add $(2 s, 2 s)$ to $R$,
at stage $2 s+1$. check if $m \leq 2 s$ is in $\operatorname{ran}(g)$ : if so add $(2 m, 2 s+1),(2 s+1,2 m)$ to $R$. If not, add $(2 s+1,2 s+1)$ to $R$.


## Current results: an equivalence to $\mathrm{ACA}_{0}$

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary injection. (e.g. $g(4)=1$ )
Construct a matching problem $P=(A, B, R)$ and well-order $\left(A,<_{A}\right)$ as follows:
$A=B=\mathbb{N}$ and build $R$ in stages:
at stage $2 s$ add $(2 s, 2 s)$ to $R$,
at stage $2 s+1$. check if $m \leq 2 s$ is in $\operatorname{ran}(g)$ : if so add $(2 m, 2 s+1),(2 s+1,2 m)$ to $R$. If not, add $(2 s+1,2 s+1)$ to $R$.


## Current results: an equivalence to $\mathrm{ACA}_{0}$

Apply OTS to obtain a unique solution $f$ :


So, OTS implies $\mathrm{ACA}_{0}$.

## Current results: a proof in $\mathrm{ATR}_{0}$

## Theorem (Hughes)

The following is provable in $\mathrm{ATR}_{0}$ :
STO: A matching problem $P=(A, B, R)$ has a unique solution only if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying $R(a)-R\left(\left\{a^{\prime}: a^{\prime}<A a\right\}\right)=\{b\}$.

## Current results: a proof in $A T R_{0}$

Fix a matching problem $P=(A, B, R)$ with unique solution $f$.
Our goal is to build a well-order such that each element has exactly one permissable match that it's predeccesors do not have.

Given an initial segment $\left(A_{0}, \leq\right)$ of the desired well-order $(A, \leq)$, it is arithmetical to find a suitable next element:

$$
\psi\left(A_{0}, a\right): R(a)-\bigcup_{a^{\prime} \in A_{0}} R\left(a^{\prime}\right)=\{f(a)\}
$$

Thus, in ATR $_{0}$, we may iteratively construct the desired well-order by applying $\psi$ at each stage to find an appopriate $a \in A$ to append to the order.

We need only determine which well-order to iterate upon.

## Current results: a proof in $\mathrm{ATR}_{0}$

Given a tree $T$, recall the Kleene-Brouwer order of $T, \mathrm{~KB}(T)$ is defined by

$$
\sigma<_{\mathrm{KB}} \tau \Longleftrightarrow \sigma \succ \tau \vee \exists n(\sigma \upharpoonright n=\tau \upharpoonright n \wedge \sigma(n)<\tau(n))
$$

$\mathrm{ACA}_{0}$ suffices to show that $\mathrm{KB}(T)$ is a well-order when $T$ is well-founded.

We construct a well-founded tree $T$ which encodes the dependencies of elements of $A$ and iterate upon $\operatorname{KB}(T)$.

Let

$$
\begin{aligned}
T_{0} & =\langle \rangle \cup\{\langle a\rangle: a \in A\} \\
T_{s+1} & =T_{s} \cup\left\{\sigma^{\curvearrowright}\langle a\rangle: \sigma \in T_{s}, a \neq \sigma(|\sigma|-1), f(a) \in R(\sigma(|\sigma|-1))\right\}
\end{aligned}
$$

And set $T=\cup_{s \in \omega} T_{s}$.

## Current results: a proof in $\mathrm{ATR}_{0}$

The unique solution of $P$ guarentees $T$ is well-founded.

$$
\begin{array}{r}
R\left(a_{0}\right)=\left\{f\left(a_{0}\right), f\left(a_{2}\right)\right\}, \quad R\left(a_{1}\right)=\left\{f\left(a_{1}\right)\right\}, \quad R\left(a_{2}\right)=\left\{f\left(a_{2}\right), f\left(a_{1}\right)\right\}, \\
\text { and } R\left(a_{n}\right)=\left\{f\left(a_{n}\right)\right\} \cup\left\{f\left(a_{2 i}\right): i \in \omega\right\}
\end{array}
$$



## Current results: a proof in $\mathrm{ATR}_{0}$

The unique solution of $P$ guarentees $T$ is well-founded.

$$
\begin{array}{r}
R\left(a_{0}\right)=\left\{f\left(a_{0}\right), f\left(a_{2}\right)\right\}, \quad R\left(a_{1}\right)=\left\{f\left(a_{1}\right)\right\}, \quad R\left(a_{2}\right)=\left\{f\left(a_{2}\right), f\left(a_{1}\right)\right\}, \\
\text { and } R\left(a_{n}\right)=\left\{f\left(a_{n}\right)\right\} \cup\left\{f\left(a_{2 i}\right): i \in \omega\right\}
\end{array}
$$



## Current results: a more formal proof in $\mathrm{ATR}_{0}$

We define two formulas $\psi(\sigma, Y)$ :

$$
\begin{aligned}
& {[(\neg \exists j \in X)(\sigma(|\sigma|-1), j) \in Y] \wedge} \\
& \left(R(\sigma(|\sigma|-1))-\underset{\{a:(\exists j \in X)}{\bigcup_{(a, j) \in Y\}}} R(a)=\{f(\sigma(|\sigma|-1))\}\right)
\end{aligned}
$$

and $\theta(n, Y)$ :

$$
\begin{aligned}
(\exists \sigma \in T)[(\psi(\sigma, Y) \wedge((\forall \tau \in T) \psi(\tau, Y) & \left.\left.\rightarrow \sigma \leq_{\mathrm{KB}} \tau\right)\right) \\
& \wedge(n=\sigma(|\sigma|-1))]
\end{aligned}
$$

ATR $_{0}$ contains axioms which guarentee the existence of a set $Y$ such that $H_{\theta}(\operatorname{KB}(T), Y)$ holds.

We then verify that $Y$ orders all of $A$, is well founded, and satsifies the desired property.

## Current results: a reversal to $\mathrm{WKL}_{0}$

Consider the principle STO(F):
Let $P=(A, B, R)$ be a matching problem with a unique solution in which every element has finitely many permissible matches. Then there is a well-order $\left(A,<_{A}\right)$ such that for every $a \in A$, there is a unique $b \in B$ such that

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

If the order type of the well-order is prescribed as $\omega$, this principle is equivalent to $A C A_{0}$.

Theorem (Hughes)
Over $\mathrm{RCA}_{0}$, STO(F) implies $\mathrm{WKL}_{0}$.

## Current results: a reversal to $\mathrm{WKL}_{0}$

Given an infinite binary tree $T$, construct a matching problem $P=(A, B, R)$ whose well-order computes a path in $T$ as follows:
$A=B=\left\{a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma}: \sigma \in T\right\}$ and
$R=\left\{\left(a_{\sigma}, b_{\sigma}\right),\left(b_{\sigma}, a_{\sigma}\right),\left(c_{\sigma}, d_{\sigma}\right),\left(d_{\sigma}, c_{\sigma}\right): \sigma \in T\right\}$.


## Current results: a reversal to $\mathrm{WKL}_{0}$

Given an infinite binary tree $T$, construct a matching problem $P=(A, B, R)$ whose well-order computes a path in $T$ as follows:
$A=B=\left\{a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma}: \sigma \in T\right\}$ and
$R=\left\{\left(a_{\sigma}, b_{\sigma}\right),\left(b_{\sigma}, a_{\sigma}\right),\left(c_{\sigma}, d_{\sigma}\right),\left(d_{\sigma}, c_{\sigma}\right): \sigma \in T\right\}$.

If $\sigma \frown 0 \in T$ but $\sigma^{\frown} 1 \notin T$ Add $\left(c_{\sigma}, b_{\sigma}\right)$ and $\left(b_{\sigma}, d_{\sigma}\right)$ to $R$.

This forces $a_{\sigma}<b_{\sigma}$. ("go left")


If $\sigma \frown 0 \notin T$ but $\sigma^{\frown} 1 \in T$
Add $\left(c_{\sigma}, a_{\sigma}\right)$ and $\left(a_{\sigma}, d_{\sigma}\right)$ to $R$.
This forces $a_{\sigma}>b_{\sigma}$. ("go right")


## Current results: a reversal to $\mathrm{WKL}_{0}$

Given an infinite binary tree $T$, construct a matching problem $P=(A, B, R)$ whose well-order computes a path in $T$ as follows:
$A=B=\left\{a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma}: \sigma \in T\right\}$ and
$R=\left\{\left(a_{\sigma}, b_{\sigma}\right),\left(b_{\sigma}, a_{\sigma}\right),\left(c_{\sigma}, d_{\sigma}\right),\left(d_{\sigma}, c_{\sigma}\right): \sigma \in T\right\}$.
If $\sigma^{\frown} 0 \notin T$ but $\sigma^{\frown} 1 \notin T$
Add $\left(c_{\sigma}, b_{\tau}\right)$ and $\left(b_{\tau}, d_{\sigma}\right)$ to $R$ if $\tau(|\sigma|)=1$ ("go left instead") Add $\left(c_{\sigma}, a_{\tau}\right)$ and $\left(a_{\tau}, d_{\sigma}\right)$ to $R$ if $\tau(|\sigma|)=0$ ("go right instead")

where $\tau$ is the longest predeccesor of $\sigma$ with a long enough extension in $T$.

If $\sigma^{\frown} 0 \in T$ and $\sigma^{\frown} 1 \in T$ "wait."


## Current results: a reversal to $\mathrm{WKL}_{0}$

$P=(A, B, R)$ has a unique solution $f: a_{\sigma} \mapsto b_{\sigma}, b_{\sigma} \mapsto a_{\sigma}, \ldots$ Apply STO to well-order $A$ and notice the construction guarantees:

## Stage Order

| 2 | $a_{\langle \rangle}>b_{\langle \rangle}$ |
| :--- | :--- |
| 1 | $a_{0}<b_{0}$ |
| 2 | $a_{1}<b_{1}$ |
| 2 | $a_{00} ? b_{00}$ |
| 2 | $a_{10}>b_{10}$ |
| 2 | $a_{11} ? b_{11}$ |
| 4 | $a_{101}<b_{101}$ |
| 4 | $a_{1010}<b_{1010}$ |
| 4 | $a_{1011} ? b_{1011}$ |
| $\vdots$ | $a_{10100} ? b_{10100}$ |



From the order, we compute a path.

## References

[1] Harvey M. Friedman, Systems of second order arithmetic with restricted induction, I, II (abstracts), J. Symbolic Logic 41 (1976), no. 2, 557-559.
[2] Marshall Hall Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926. DOI 10.1090/S0002-9904-1948-09098-X. MR0027033 (10,238g)
[3] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
[4] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions., Arch. Math. Logic 54 (2015), 49-57. DOI 10.1007/s00153-014-0401-z.
[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007, MR2517689.

Thank you for your attention!

