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Reverse mathematics: the motivation

The central question:
What is the appropriate axiomatization of a given fragment
of (countable) mathematics?



Reverse mathematics: the method

Let Ξ = {ξ0, ξ1, . . . , ξn} be some fragment of mathematics

and B an axiom system too weak to prove Ξ.

Determine an addiontal axiom A outside of B such that

B ` A ↔ ξi for 0 ≤ i ≤ n.

Then B +A is a necessary and sufficient axiomatization of Ξ.

B ` A → ξi B ` ξi → A
a “regular” proof a “reversed” proof



Reverse mathematics: the setting

We consider five subsystems of second-order arithmetic.

The base system RCA0 consists of axioms for arithmetic, induction
for Σ0

1 formula, and set comprehension for ∆0
1 formula.

The system WKL0 consists of RCA0 plus
weak Kőnig’s lemma:

Every infinite binary tree has an infinite path.

The system ACA0 consists of RCA0 plus
axioms for set comprehension for all arithmetical formula.

The system ATR0 consists of ACA0 plus
axioms for iterating arithmetical set comprehension along any
(countable) well-order.

The system Π1
1−CA0 consists of ACA0 plus

axioms for set comprehension for Π1
1 formula.



Reverse mathematics: the “big five”

RCA0 : arithmetic, Σ0
1-induction, recursive comprehension

∩
WKL0: RCA0 + “every infinite binary tree has an infinite path”

∩
ACA0: RCA0 + comprehension for arithmetical formulas

∩
ATR0: ACA0 + iterability of arithmetical operators

∩ along any well-order

Π1
1−CA0: ACA0 + comprehension for Π1

1 formulas



Reverse mathematics: the “big five” in context

RCA0 ` the intermediate value theorem

>
WKL0 ↔ the Heine/Borel covering lemma;

ACA0 ↔ the Bolzano/Weierstaß theorem;

ATR0 ↔ the perfect set theorem;

Π1
1−CA0 ↔ the Cantor/Bendixson theorem.



Matching problems: the idea



Matching problems: the formalization

A matching problem is a triple P = (A,B,R) where A,B ⊆ N and
R ⊆ A× B.

If (a, b) ∈ R we say b is a permissable match of a and set
R(a) = {b : (a, b) ∈ R}.

A solution to a matching problem is an injection f : A→ B such
that f (a) ∈ R(a) for all a ∈ A.

0 1 2

3 4 5 6
A = {0, 1, 2}
B = {3, 4, 5, 6}
R = {(0, 3), (0, 4), (1, 4), (2, 5), (2, 6)}

f1 =


0 7→ 3

1 7→ 4

2 7→ 5

f2 =


0 7→ 3

1 7→ 4

2 7→ 6



Matching problems: Hall’s theorem

Theorem (Philip Hall)

Let P = (A,B,R) be a matching problem in which A is finite and
every element has finitely many permissable matches. If
|A0| ≤ |R(A0)| for every A0 ⊆ A, then P has a solution.

Theorem (Marshall Hall)

Let P = (A,B,R) be a matching problem in which every element
has finitely many permissable matches. If |A0| ≤ |R(A0)| for every
A0 ⊆ A, then P has a solution.

Theorem (Hirst)

The following are provable in RCA0

1. Philip Hall’s theorem

2. ACA0 ↔ Marshall Hall’s theorem



Matching problems: unique matchings

Theorem (Hirst, Hughes)

A matching problem P = (A,B,R), in which every element has
finitely many permissable matches, has a unique solution if and
only if there is an enumeration of A, say 〈ai 〉i≥1 such that for every
n ≥ 1, |R(a1, a2, . . . , an)| = n.

Theorem (Hirst, Hughes)

Over RCA0, the following are equivalent

1. ACA0

2. The above theorem



Matching problems: many (possible) matches

Consider matching problems in which any element may have
infinitely many permissable matches.

Theorem
A matching problem P = (A,B,R) has a unique solution if and
only if there is a well-order (A, <A) such that for each a ∈ A, there
is a unique b ∈ B satisfying

R(a)− R({a′ : a′ <A a}) = {b}.

Label the forward direction STO and the reverse direction OTS.

Conjecture (Hirst)

Over RCA0

1. ATR0 is provably equivalent to STO

2. and ACA0 is provably equivalent to OTS.



Current results: a partial answer

Theorem (Hughes)

Over RCA0, the following are equivalent

1. ACA0

2. OTS: A matching problem P = (A,B,R) has a unique
solution if there is a well-order (A, <A) such that for each
a ∈ A, there is a unique b ∈ B satisfying

R(a)− R({a′ : a′ <A a}) = {b}.

Theorem (Hughes)

The following is provable in ATR0:

STO: A matching problem P = (A,B,R) has a unique
solution only if there is a well-order (A, <A) such that for
each a ∈ A, there is a unique b ∈ B satisfying
R(a)− R({a′ : a′ <A a}) = {b}.



Current results: an equivalence to ACA0

Theorem (Hughes)

Over RCA0, the following are equivalent

1. ACA0

2. OTS: A matching problem P = (A,B,R) has a unique
solution if there is a well-order (A,≤A) such that for each
a ∈ A, there is a unique b ∈ B satisfying

R(a)− R({a′ : a′ ≤A a}) = {b}.

Proof: To show (1) implies (2), we are given a matching problem
and appropriate well-order and we arithemetically define the unique
solution.

(a, b) ∈ f ↔ [(a, b) ∈ R ∧ ∀a′(a′ <A a→ (a, b) 6∈ R)].



Current results: an equivalence to ACA0

Lemma (Simpson)

Over RCA0, the following are equivalent

1. ACA0

2. For any injection g : N→ N

∃X∀y(y ∈ X ↔ ∃x f (x) = y)

that is, the range of g exists.

Thus, to show
RCA0 ` OTS→ ACA0

we instead show

RCA0 ` OTS→ Item 2↔ ACA0.



Current results: an equivalence to ACA0

Let g : N→ N be an arbitrary injection. (e.g. g(4) = 1)

Construct a matching problem P = (A,B,R) and well-order
(A, <A) as follows:

A = B = N and build R in stages:

at stage 2s add (2s, 2s) to R,

at stage 2s + 1. check if m ≤ 2s is in ran(g): if so add
(2m, 2s + 1), (2s + 1, 2m) to R. If not, add (2s + 1, 2s + 1) to R.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 <A 1 <A 2 <A 3



Current results: an equivalence to ACA0

Let g : N→ N be an arbitrary injection. (e.g. g(4) = 1)

Construct a matching problem P = (A,B,R) and well-order
(A, <A) as follows:

A = B = N and build R in stages:

at stage 2s add (2s, 2s) to R,

at stage 2s + 1. check if m ≤ 2s is in ran(g): if so add
(2m, 2s + 1), (2s + 1, 2m) to R. If not, add (2s + 1, 2s + 1) to R.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 <A 1 <A 2 <A 3 <A 4



Current results: an equivalence to ACA0

Let g : N→ N be an arbitrary injection. (e.g. g(4) = 1)

Construct a matching problem P = (A,B,R) and well-order
(A, <A) as follows:

A = B = N and build R in stages:

at stage 2s add (2s, 2s) to R,

at stage 2s + 1. check if m ≤ 2s is in ran(g): if so add
(2m, 2s + 1), (2s + 1, 2m) to R. If not, add (2s + 1, 2s + 1) to R.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 <A 1 <A 2 <A 3 <A 4



Current results: an equivalence to ACA0

Let g : N→ N be an arbitrary injection. (e.g. g(4) = 1)

Construct a matching problem P = (A,B,R) and well-order
(A, <A) as follows:

A = B = N and build R in stages:

at stage 2s add (2s, 2s) to R,

at stage 2s + 1. check if m ≤ 2s is in ran(g): if so add
(2m, 2s + 1), (2s + 1, 2m) to R. If not, add (2s + 1, 2s + 1) to R.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 <A 1 <A 5 <A 2 <A 3 <A 4



Current results: an equivalence to ACA0

Let g : N→ N be an arbitrary injection. (e.g. g(4) = 1)

Construct a matching problem P = (A,B,R) and well-order
(A, <A) as follows:

A = B = N and build R in stages:

at stage 2s add (2s, 2s) to R,

at stage 2s + 1. check if m ≤ 2s is in ran(g): if so add
(2m, 2s + 1), (2s + 1, 2m) to R. If not, add (2s + 1, 2s + 1) to R.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 <A 1 <A 5 <A 2 <A 3 <A 4 <A 6



Current results: an equivalence to ACA0

Apply OTS to obtain a unique solution f :

0 1 2 3 4 5 6

0 1 2 3 4 5 6

f =



0 7→ 0

1 7→ 1

2 7→ 5

3 7→ 3

4 7→ 4

5 7→ 2

6 7→ 6

=⇒ f (2n) 6= 2n↔ n ∈ ran(g)

So, OTS implies ACA0.



Current results: a proof in ATR0

Theorem (Hughes)

The following is provable in ATR0:

STO: A matching problem P = (A,B,R) has a unique
solution only if there is a well-order (A, <A) such that for
each a ∈ A, there is a unique b ∈ B satisfying
R(a)− R({a′ : a′ <A a}) = {b}.



Current results: a proof in ATR0

Fix a matching problem P = (A,B,R) with unique solution f .

Our goal is to build a well-order such that each element has
exactly one permissable match that it’s predeccesors do not have.

Given an initial segment (A0,≤) of the desired well-order (A,≤), it
is arithmetical to find a suitable next element:

ψ(A0, a) : R(a)−
⋃

a′∈A0

R(a′) = {f (a)}.

Thus, in ATR0, we may iteratively construct the desired well-order
by applying ψ at each stage to find an appopriate a ∈ A to append
to the order.

We need only determine which well-order to iterate upon.



Current results: a proof in ATR0

Given a tree T , recall the Kleene-Brouwer order of T , KB(T ) is
defined by

σ <KB τ ⇐⇒ σ � τ ∨ ∃n(σ � n = τ � n ∧ σ(n) < τ(n))

ACA0 suffices to show that KB(T ) is a well-order when T is
well-founded.

We construct a well-founded tree T which encodes the
dependencies of elements of A and iterate upon KB(T ).

Let

T0 = 〈〉 ∪ {〈a〉 : a ∈ A}
Ts+1 = Ts ∪ {σ_〈a〉 : σ ∈ Ts , a 6= σ(|σ| − 1), f (a) ∈ R(σ(|σ| − 1))}

And set T = ∪s∈ωTs .



Current results: a proof in ATR0

The unique solution of P guarentees T is well-founded.

R(a0) = {f (a0), f (a2)}, R(a1) = {f (a1)}, R(a2) = {f (a2), f (a1)},
and R(an) = {f (an)} ∪ {f (a2i ) : i ∈ ω}

〈〉

. . .an

. . .a2n

.... . .
...

. . .a4

.... . .
...

a2

a1

a0

a2

a1

. . .a2

a1

a1a0

a2

a1



Current results: a proof in ATR0

The unique solution of P guarentees T is well-founded.

R(a0) = {f (a0), f (a2)}, R(a1) = {f (a1)}, R(a2) = {f (a2), f (a1)},
and R(an) = {f (an)} ∪ {f (a2i ) : i ∈ ω}

〈〉

. . .an

. . .a2n

.... . .
...

. . .a4

.... . .
...

a2

a1

a0

a2

a1

. . .a2

a1

a1a0

a2

a1



Current results: a more formal proof in ATR0

We define two formulas ψ(σ,Y ):

[(¬∃j ∈ X )
(
σ(|σ| − 1), j

)
∈ Y ] ∧R

(
σ(|σ| − 1)

)
−

⋃
{a:(∃j∈X ) (a,j)∈Y }

R(a) = {f
(
σ(|σ| − 1)

)
}


and θ(n,Y ):

(∃σ ∈ T )

[(
ψ(σ,Y ) ∧

(
(∀τ ∈ T )ψ(τ,Y )→ σ ≤KB τ

))
∧
(
n = σ(|σ| − 1)

)]
.

ATR0 contains axioms which guarentee the existence of a set Y
such that Hθ(KB(T ),Y ) holds.

We then verify that Y orders all of A, is well founded, and satsifies
the desired property.



Current results: a reversal to WKL0

Consider the principle STO(F):

Let P = (A,B,R) be a matching problem with a unique
solution in which every element has finitely many permissi-
ble matches. Then there is a well-order (A, <A) such that
for every a ∈ A, there is a unique b ∈ B such that

R(a)− R({a′ : a′ <A a}) = {b}.

If the order type of the well-order is prescribed as ω, this principle
is equivalent to ACA0.

Theorem (Hughes)

Over RCA0, STO(F) implies WKL0.



Current results: a reversal to WKL0

Given an infinite binary tree T , construct a matching problem
P = (A,B,R) whose well-order computes a path in T as follows:

A = B = {aσ, bσ, cσ, dσ : σ ∈ T} and
R = {(aσ, bσ), (bσ, aσ), (cσ, dσ), (dσ, cσ) : σ ∈ T}.

aσ bσ cσ dσ

aσ bσ cσ dσ



Current results: a reversal to WKL0

Given an infinite binary tree T , construct a matching problem
P = (A,B,R) whose well-order computes a path in T as follows:

A = B = {aσ, bσ, cσ, dσ : σ ∈ T} and
R = {(aσ, bσ), (bσ, aσ), (cσ, dσ), (dσ, cσ) : σ ∈ T}.

If σ_0 ∈ T but σ_1 6∈ T
Add (cσ, bσ) and (bσ, dσ) to R.

This forces aσ < bσ. (“go left”)

If σ_0 6∈ T but σ_1 ∈ T
Add (cσ, aσ) and (aσ, dσ) to R.

This forces aσ > bσ. (“go right”)

aσ bσ cσ dσ

aσ bσ cσ dσ

aσ bσ cσ dσ

aσ bσ cσ dσ



Current results: a reversal to WKL0

Given an infinite binary tree T , construct a matching problem
P = (A,B,R) whose well-order computes a path in T as follows:

A = B = {aσ, bσ, cσ, dσ : σ ∈ T} and
R = {(aσ, bσ), (bσ, aσ), (cσ, dσ), (dσ, cσ) : σ ∈ T}.

If σ_0 6∈ T but σ_1 6∈ T

Add (cσ, bτ ) and (bτ , dσ) to R
if τ(|σ|) = 1 (“go left instead”)

Add (cσ, aτ ) and (aτ , dσ) to R
if τ(|σ|) = 0 (“go right instead”)

where τ is the longest
predeccesor of σ with a long
enough extension in T .

If σ_0 ∈ T and σ_1 ∈ T
“wait.”

aτ bτ cσ dσ

aτ bτ cσ dσ

aτ bτ cσ dσ

aτ bτ cσ dσ



Current results: a reversal to WKL0

P = (A,B,R) has a unique solution f : aσ 7→ bσ, bσ 7→ aσ, . . .
Apply STO to well-order A and notice the construction guarantees:

Stage Order
2 a〈〉 > b〈〉
1 a0 < b0
2 a1 < b1
2 a00 ? b00
2 a10 > b10
2 a11 ? b11
4 a101 < b101
4 a1010 < b1010
4 a1011 ? b1011
... a10100 ? b10100

〈〉

1

1110

101

10111010

10100

...
...

0

00

From the order, we compute a path.
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