Generalizations of Hall's theorem in reverse mathematics

Noah A. Hughes University of Connecticut noah.hughes@uconn.edu

Monday, 8th July, 2019

IMS Graduate Summer School in Logic

The central question:

What is the appropriate axiomatization of a given fragment of (countable) mathematics?

Let $\Xi = \{\xi_0, \xi_1, \dots, \xi_n\}$ be some fragment of mathematics and \mathcal{B} an axiom system too weak to prove Ξ .

Determine an addiontal axiom $\mathcal A$ outside of $\mathcal B$ such that

 $\mathcal{B} \vdash \mathcal{A} \leftrightarrow \xi_i$ for $0 \leq i \leq n$.

Then $\mathcal{B} + \mathcal{A}$ is a necessary and sufficient axiomatization of Ξ .

 $\mathcal{B} \vdash \mathcal{A}
ightarrow \xi_i$ a "regular" proof

 $\mathcal{B} \vdash \xi_i
ightarrow \mathcal{A}$ a "reversed" proof We consider five subsystems of second-order arithmetic.

The base system RCA₀ consists of axioms for arithmetic, induction for Σ_1^0 formula, and set comprehension for Δ_1^0 formula.

The system WKL₀ consists of RCA₀ plus weak Kőnig's lemma: Every infinite binary tree has an infinite path.

The system ACA_0 consists of RCA_0 plus axioms for set comprehension for all arithmetical formula.

The system ATR_0 consists of ACA_0 plus axioms for iterating arithmetical set comprehension along any (countable) well-order.

The system Π_1^1 -CA₀ consists of ACA₀ plus axioms for set comprehension for Π_1^1 formula.

Reverse mathematics: the "big five"

- $\mathsf{ACA}_0: \qquad \mathsf{RCA}_0 + \text{ comprehension for arithmetical formulas}$
 - \cap
- ATR₀: ACA₀ + iterability of arithmetical operators
- ∩ along any well-order
- $\Pi^1_1{-}\mathsf{CA}_0{:}\quad \mathsf{ACA}_0{+} \text{ comprehension for } \Pi^1_1 \text{ formulas}$

Reverse mathematics: the "big five" in context

- $RCA_0 \vdash$ the intermediate value theorem Т WKL \leftrightarrow the Heine/Borel covering lemma; ACA₀ \leftrightarrow the Bolzano/Weierstaß theorem; $ATR_0 \leftrightarrow the perfect set theorem;$
- $\Pi^1_1{-}\mathsf{CA}_0\quad \leftrightarrow \quad \text{the Cantor/Bendixson theorem}.$

Matching problems: the idea

Matching problems: the formalization

A matching problem is a triple P = (A, B, R) where $A, B \subseteq \mathbb{N}$ and $R \subseteq A \times B$.

If $(a, b) \in R$ we say b is a permissable match of a and set $R(a) = \{b : (a, b) \in R\}.$

A solution to a matching problem is an injection $f : A \rightarrow B$ such that $f(a) \in R(a)$ for all $a \in A$.

$$\begin{array}{c} 3 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline$$

Theorem (Philip Hall)

Let P = (A, B, R) be a matching problem in which A is finite and every element has finitely many permissable matches. If $|A_0| \le |R(A_0)|$ for every $A_0 \subseteq A$, then P has a solution.

Theorem (Marshall Hall)

Let P = (A, B, R) be a matching problem in which every element has finitely many permissable matches. If $|A_0| \le |R(A_0)|$ for every $A_0 \subseteq A$, then P has a solution.

Theorem (Hirst)

The following are provable in RCA₀

- 1. Philip Hall's theorem
- 2. $ACA_0 \leftrightarrow Marshall Hall's theorem$

Matching problems: unique matchings

Theorem (Hirst, Hughes)

A matching problem P = (A, B, R), in which every element has finitely many permissable matches, has a unique solution if and only if there is an enumeration of A, say $\langle a_i \rangle_{i \ge 1}$ such that for every $n \ge 1$, $|R(a_1, a_2, ..., a_n)| = n$.

Theorem (Hirst, Hughes)

Over RCA₀, the following are equivalent

- 1. ACA_0
- 2. The above theorem

Consider matching problems in which any element may have infinitely many permissable matches.

Theorem

A matching problem P = (A, B, R) has a unique solution if and only if there is a well-order $(A, <_A)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$R(a) - R(\{a': a' <_A a\}) = \{b\}.$$

Label the forward direction STO and the reverse direction OTS.

Conjecture (Hirst)

Over RCA₀

- 1. ATR₀ is provably equivalent to STO
- 2. and ACA_0 is provably equivalent to OTS.

Theorem (Hughes)

Over RCA₀, the following are equivalent

- $1. \ \mathsf{ACA}_0$
- 2. OTS: A matching problem P = (A, B, R) has a unique solution if there is a well-order $(A, <_A)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$R(a) - R(\{a': a' <_A a\}) = \{b\}.$$

Theorem (Hughes)

The following is provable in ATR₀:

STO: A matching problem P = (A, B, R) has a unique solution only if there is a well-order $(A, <_A)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying $R(a) - R(\{a' : a' <_A a\}) = \{b\}.$

Theorem (Hughes)

Over RCA₀, the following are equivalent

- $1. \ \mathsf{ACA}_0$
- 2. OTS: A matching problem P = (A, B, R) has a unique solution if there is a well-order (A, \leq_A) such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$R(a) - R(\{a': a' \leq_A a\}) = \{b\}.$$

Proof: To show (1) implies (2), we are given a matching problem and appropriate well-order and we arithemetically define the unique solution.

$$(a,b) \in f \leftrightarrow [(a,b) \in R \land \forall a'(a' <_A a \rightarrow (a,b) \notin R)].$$

Lemma (Simpson) Over RCA₀, the following are equivalent

- 1. ACA_0
- 2. For any injection $g : \mathbb{N} \to \mathbb{N}$

$$\exists X \forall y (y \in X \leftrightarrow \exists x f(x) = y)$$

Thus, to show

$$\mathsf{RCA}_0 \vdash \mathsf{OTS} \to \mathsf{ACA}_0$$

we instead show

$$\mathsf{RCA}_0 \vdash \mathsf{OTS} \to \mathsf{Item}\ 2 \leftrightarrow \mathsf{ACA}_0.$$

Let $g : \mathbb{N} \to \mathbb{N}$ be an arbitrary injection.

$$(e.g. g(4) = 1)$$

Construct a matching problem P = (A, B, R) and well-order $(A, <_A)$ as follows:

 $A = B = \mathbb{N}$ and build R in stages:

at stage 2s add (2s, 2s) to R,

Let $g : \mathbb{N} \to \mathbb{N}$ be an arbitrary injection.

(e.g.
$$g(4) = 1$$
)

Construct a matching problem P = (A, B, R) and well-order $(A, <_A)$ as follows:

 $A = B = \mathbb{N}$ and build R in stages:

at stage 2s add (2s, 2s) to R,

Let $g : \mathbb{N} \to \mathbb{N}$ be an arbitrary injection.

(e.g.
$$g(4) = 1$$
)

Construct a matching problem P = (A, B, R) and well-order $(A, <_A)$ as follows:

 $A = B = \mathbb{N}$ and build R in stages:

at stage 2s add (2s, 2s) to R,

Let $g : \mathbb{N} \to \mathbb{N}$ be an arbitrary injection.

(e.g.
$$g(4) = 1$$
)

Construct a matching problem P = (A, B, R) and well-order $(A, <_A)$ as follows:

 $A = B = \mathbb{N}$ and build R in stages:

at stage 2s add (2s, 2s) to R,

Let $g : \mathbb{N} \to \mathbb{N}$ be an arbitrary injection.

(e.g. g(4) = 1)

Construct a matching problem P = (A, B, R) and well-order $(A, <_A)$ as follows:

 $A = B = \mathbb{N}$ and build R in stages:

at stage 2s add (2s, 2s) to R,

Current results: an equivalence to ACA_0

Apply OTS to obtain a unique solution f:

Theorem (Hughes)

The following is provable in ATR_0 :

STO: A matching problem P = (A, B, R) has a unique solution only if there is a well-order $(A, <_A)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying $R(a) - R(\{a' : a' <_A a\}) = \{b\}.$

Fix a matching problem P = (A, B, R) with unique solution f.

Our goal is to build a well-order such that each element has exactly one permissable match that it's predeccesors do not have.

Given an initial segment (A_0, \leq) of the desired well-order (A, \leq) , it is arithmetical to find a suitable next element:

$$\psi(A_0,a): R(a) - \bigcup_{a' \in A_0} R(a') = \{f(a)\}.$$

Thus, in ATR₀, we may iteratively construct the desired well-order by applying ψ at each stage to find an appopriate $a \in A$ to append to the order.

We need only determine which well-order to iterate upon.

Given a tree T, recall the Kleene-Brouwer order of T, KB(T) is defined by

$$\sigma <_{\mathrm{KB}} \tau \iff \sigma \succ \tau \lor \exists n(\sigma \upharpoonright n = \tau \upharpoonright n \land \sigma(n) < \tau(n))$$

ACA₀ suffices to show that $\operatorname{KB}(\mathcal{T})$ is a well-order when \mathcal{T} is well-founded.

We construct a well-founded tree T which encodes the dependencies of elements of A and iterate upon KB(T).

Let

$$T_{0} = \langle \rangle \cup \{ \langle a \rangle : a \in A \}$$

$$T_{s+1} = T_{s} \cup \{ \sigma^{\frown} \langle a \rangle : \sigma \in T_{s}, a \neq \sigma(|\sigma|-1), f(a) \in R(\sigma(|\sigma|-1)) \}$$

And set $T = \bigcup_{s \in \omega} T_{s}$.

Current results: a proof in ATR₀

The unique solution of P guarentees T is well-founded.

$$R(a_0) = \{f(a_0), f(a_2)\}, \quad R(a_1) = \{f(a_1)\}, \quad R(a_2) = \{f(a_2), f(a_1)\},$$

and
$$R(a_n) = \{f(a_n)\} \cup \{f(a_{2i}) : i \in \omega\}$$

Current results: a proof in ATR₀

The unique solution of P guarentees T is well-founded.

$$R(a_0) = \{f(a_0), f(a_2)\}, \quad R(a_1) = \{f(a_1)\}, \quad R(a_2) = \{f(a_2), f(a_1)\},$$

and
$$R(a_n) = \{f(a_n)\} \cup \{f(a_{2i}) : i \in \omega\}$$

Current results: a more formal proof in ATR₀

We define two formulas $\psi(\sigma, Y)$:

$$[(\neg \exists j \in X) (\sigma(|\sigma|-1), j) \in Y] \land$$
$$\left(R(\sigma(|\sigma|-1)) - \bigcup_{\substack{\{a: (\exists j \in X) (a,j) \in Y\}}} R(a) = \{f(\sigma(|\sigma|-1))\} \right)$$

and
$$\theta(n, Y)$$
:
 $(\exists \sigma \in T) \Big[(\psi(\sigma, Y) \land ((\forall \tau \in T) \psi(\tau, Y) \rightarrow \sigma \leq_{\mathrm{KB}} \tau)) \land (n = \sigma(|\sigma| - 1)) \Big].$

ATR₀ contains axioms which guarentee the existence of a set Y such that $H_{\theta}(\text{KB}(\mathcal{T}), Y)$ holds.

We then verify that Y orders all of A, is well founded, and satsifies the desired property.

Consider the principle STO(F):

Let P = (A, B, R) be a matching problem with a unique solution in which every element has finitely many permissible matches. Then there is a well-order $(A, <_A)$ such that for every $a \in A$, there is a unique $b \in B$ such that

$$R(a) - R(\{a': a' <_A a\}) = \{b\}.$$

If the order type of the well-order is prescribed as ω , this principle is equivalent to ACA₀.

Theorem (Hughes) *Over* RCA₀, STO(F) *implies* WKL₀.

Current results: a reversal to WKL₀

Given an infinite binary tree *T*, construct a matching problem P = (A, B, R) whose well-order computes a path in *T* as follows: $A = B = \{a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma} : \sigma \in T\}$ and $R = \{(a_{\sigma}, b_{\sigma}), (b_{\sigma}, a_{\sigma}), (c_{\sigma}, d_{\sigma}), (d_{\sigma}, c_{\sigma}) : \sigma \in T\}.$

Current results: a reversal to WKL₀

Given an infinite binary tree *T*, construct a matching problem P = (A, B, R) whose well-order computes a path in *T* as follows: $A = B = \{a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma} : \sigma \in T\}$ and $R = \{(a_{\sigma}, b_{\sigma}), (b_{\sigma}, a_{\sigma}), (c_{\sigma}, d_{\sigma}), (d_{\sigma}, c_{\sigma}) : \sigma \in T\}.$

If $\sigma^{\frown} 0 \in T$ but $\sigma^{\frown} 1 \notin T$ Add (c_{σ}, b_{σ}) and (b_{σ}, d_{σ}) to R. This forces $a_{\sigma} < b_{\sigma}$. ("go left") If $\sigma^{\frown} 0 \notin T$ but $\sigma^{\frown} 1 \in T$ Add (c_{σ}, a_{σ}) and (a_{σ}, d_{σ}) to R. This forces $a_{\sigma} > b_{\sigma}$. ("go right")

Current results: a reversal to WKL0

Given an infinite binary tree T, construct a matching problem P = (A, B, R) whose well-order computes a path in T as follows:

$$A = B = \{a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma} : \sigma \in T\} \text{ and} R = \{(a_{\sigma}, b_{\sigma}), (b_{\sigma}, a_{\sigma}), (c_{\sigma}, d_{\sigma}), (d_{\sigma}, c_{\sigma}) : \sigma \in T\}.$$

If $\sigma \cap 0 \notin T$ but $\sigma \cap 1 \notin T$ Add (c_{σ}, b_{τ}) and (b_{τ}, d_{σ}) to Rif $\tau(|\sigma|) = 1$ ("go left instead") Add (c_{σ}, a_{τ}) and (a_{τ}, d_{σ}) to Rif $\tau(|\sigma|) = 0$ ("go right instead") where τ is the longest predeccesor of σ with a long enough extension in T.

If $\sigma \frown 0 \in T$ and $\sigma \frown 1 \in T$ "wait."

Current results: a reversal to WKL0

P = (A, B, R) has a unique solution $f : a_{\sigma} \mapsto b_{\sigma}, b_{\sigma} \mapsto a_{\sigma}, ...$ Apply STO to well-order A and notice the construction guarantees:

From the order, we compute a path.

- Harvey M. Friedman, Systems of second order arithmetic with restricted induction, I, II (abstracts), J. Symbolic Logic 41 (1976), no. 2, 557–559.
- Marshall Hall Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922–926. DOI 10.1090/S0002-9904-1948-09098-X. MR0027033 (10,238g)
- Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181–196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
- [4] Jeffry L. Hirst and Noah A. Hughes, *Reverse mathematics and marriage problems with unique solutions.*, Arch. Math. Logic 54 (2015), 49-57. DOI 10.1007/s00153-014-0401-z.
- [5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007, MR2517689.

Thank you for your attention!