On generalizations of Hall's theorem

Noah A. Hughes

noah.hughes@uconn.edu
University of Connecticut

Sunday, November 4, 2018

NERDS 14.0

Reverse mathematics.

Goal: Determine exactly which set existence axioms are needed in the proof of a (countable analogue) of a familiar theorem.

Method: Prove results of the form

$$
\mathrm{RCA} \mathrm{~A}_{0} \vdash \mathrm{Ax} \leftrightarrow \mathrm{Thm}
$$

where the base system used is
$R C A_{0}:\left\{\begin{array}{l}\text { axioms of second order arithmetic } \\ \text { with induction restricted to } \Sigma_{1}^{o} \text { formulas } \\ \text { and comprehension restricted to } \Delta_{1}^{o} \text { formulas }\end{array}\right.$
RCA_{0}
\Downarrow
$W_{K L}: \quad R_{0} A_{0}+$ "every infinite binary tree has an infinite pa
\Downarrow
$\mathrm{ACA}_{0}: \quad \mathrm{RCA}_{0}+$ comprehension for arithmetical formulas
\Downarrow
ATR $: \quad R_{0} A_{0}+$ iterability of arithmetical operators
\Downarrow
along any well-order
$\Pi_{1}^{1}-\mathrm{CA}_{0}: \quad \mathrm{RCA}_{0}+$ comprehension for Π_{1}^{1} formulas
$\because \because$

$$
::!
$$

$$
::!
$$

Formalization.

A matching problem is a triple $P=(A, B, R)$ where $A, B \subseteq \mathbb{N}$ and $R \subseteq A \times B$.

If $(a, b) \in R$ we say b is a permissable match of a and set $R(a)=\{b:(a, b) \in R\}$.

A solution to a matching problem is an injection $f: A \rightarrow B$ such that $f(a) \in R(a)$ for all $a \in A$.

$A=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$
$B=\{3,4,5,6\}$

The Halls' theorems.

Theorem (Philip Hall)

Let $P=(A, B, R)$ be a matching problem in which A is finite and every element has finitely many permissable matches. If $\left|A_{0}\right| \leq\left|R\left(A_{0}\right)\right|$ for every $A_{0} \subseteq A$, then P has a solution.

Theorem (Marshall Hall)

Let $P=(A, B, R)$ be a matching problem in which every element has finitely many permissable matches. If $\left|A_{0}\right| \leq\left|R\left(A_{0}\right)\right|$ for every $A_{0} \subseteq A$, then P has a solution.

Theorem (Hirst)
The following are provable in RCA。

1. Philip Hall's theorem
2. $\mathrm{ACA}_{0} \leftrightarrow$ Marshall Hall's theorem

Uniqueness.

Theorem (Hirst, Hughes)
A matching problem $P=(A, B, R)$, in which every element has finitely many permissable matches, has a unique solution if and only if there is an enumeration of A, say $\left\langle a_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|R\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right|=n$.

Uniqueness.

Theorem (Hirst, Hughes)
A matching problem $P=(A, B, R)$, in which every element has finitely many permissable matches, has a unique solution if and only if there is an enumeration of A, say $\left\langle a_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|R\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right|=n$.

Uniqueness.

Theorem (Hirst, Hughes)
A matching problem $P=(A, B, R)$, in which every element has finitely many permissable matches, has a unique solution if and only if there is an enumeration of A, say $\left\langle a_{i}\right\rangle_{i>1}$ such that for every $n \geq 1,\left|R\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right|=n$.

Theorem (Hirst, Hughes)
Over RCA_{0}, the following are equivalent

1. ACA_{0}
2. The above theorem

Uniqueness.

Theorem (Hirst, Hughes)
A matching problem $P=(A, B, R)$, in which every element has finitely many permissable matches, has a unique solution if and only if there is an enumeration of A, say $\left\langle a_{i}\right\rangle_{i>1}$ such that for every $n \geq 1,\left|R\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right|=n$.

Theorem (Hirst, Hughes)
Over RCA_{0}, the following are equivalent

1. ACA_{0}
2. The above theorem

A generalization.

We now consider arbitrary (countable) matching problems in which any element may have infinitely many permissable matches.

Theorem

A matching problem $P=(A, B, R)$ has a unique solution if and only if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

For convenience we label the forward direction STO and the reverse direction OTS.
Conjecture (Hirst)
Over RCA。

1. $A_{T} R_{0}$ is provably equivalent to STO
2. and ACA_{0} is provably equivalent to OTS .

Current results.

Theorem (Hughes)
Over RCA_{0}, the following are equivalent

1. ACA_{0}
2. OTS: A matching problem $P=(A, B, R)$ has a unique solution if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

Theorem (Hughes)
The following is provable in $\mathrm{ATR}_{\mathrm{o}}$:
STO: A matching problem $P=(A, B, R)$ has a unique solution only if there is a well-order $\left(A,<_{A}\right)$ such that for each $a \in A$, there is a unique $b \in B$ satisfying $R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\}$.

ATRo proves STO: a sketch.

Fix a matching problem $P=(A, B, R)$ with unique solution f.

Our goal is to build a well order such that each element has exactly one permissable match that it's predeccesors do not have.
Given an initial segment (A_{0}, \leq) of the desired well order (A, \leq), it is arithmetical to find a suitable next element:

$$
\psi\left(A_{0}, a\right): R(a)-\bigcup_{a^{\prime} \in A_{0}} R\left(a^{\prime}\right)=\{f(a)\} .
$$

Thus, in ATR $_{0}$, we may iteratively construct the desired well order by applying ψ at each stage to find an appopriate $a \in A$ to append to the order.
We need only determine which well order to iterate upon.

Use a short tree.

Recall for a given tree T, the Kleene-Brouwer order $\mathrm{KB}(T)$ is such that

$$
\sigma<_{\mathrm{KB}} \tau \Longleftrightarrow \sigma \succ \tau \vee \exists n(\sigma \upharpoonright n=\tau \upharpoonright n \wedge \sigma(n)<\tau(n))
$$

ACA A_{0} suffices to show the Kleene-Brouwer order of a well-founded tree is a well-order.
We construct a well-founded tree T which encodes the dependencies of elements of A and iterate upon $\mathrm{KB}(T)$.
Let

$$
\begin{aligned}
T_{0} & =\langle \rangle \cup\{\langle a\rangle: a \in A\} \\
T_{s+1} & =T_{s} \cup\left\{\sigma^{\sim}\langle a\rangle: \sigma \in T_{s}, a \neq \sigma(|\sigma|-1), f(a) \in R(\sigma(|\sigma|-1))\right\}
\end{aligned}
$$

And set $T=\cup_{s \in \omega} T_{s}$.

An example.

The unique solution of P guarentees T is well-founded.

$$
\begin{aligned}
& R\left(a_{0}\right)=\left\{f\left(a_{0}\right), f\left(a_{2}\right)\right\}, \quad R\left(a_{1}\right)=\left\{f\left(a_{1}\right)\right\}, \quad R\left(a_{2}\right)=\left\{f\left(a_{2}\right), f\left(a_{1}\right)\right\}, \\
& \text { and } R\left(a_{n}\right)=\left\{f\left(a_{n}\right)\right\} \cup\left\{f\left(a_{2 i}\right): i \in \omega\right\}
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle a_{0}, a_{2}, a_{1}\right\rangle<\left\langle a_{0}, a_{2}\right\rangle<\left\langle a_{0}\right\rangle \\
& \wedge \\
&\left\langle a_{2}, a_{1}\right\rangle<\left\langle a_{2}\right\rangle \\
& \wedge \\
& \vdots \\
& \wedge \\
&\left\langle a_{n}, a_{0}, a_{2}, a_{1}\right\rangle<\left\langle a_{n}, a_{0}, a_{2}\right\rangle<\left\langle a_{n}, a_{0}\right\rangle<\left\langle a_{n}, a_{2}, a_{1}\right\rangle \\
&<\left\langle a_{n}, a_{2}\right\rangle<\cdots<\left\langle a_{n}, a_{4}\right\rangle<\cdots<\left\langle a_{n}, a_{2 n}\right\rangle<\cdots<\left\langle a_{n}\right\rangle \\
& \wedge \\
&\left\langle a_{n+1}\right\rangle \\
& \wedge
\end{aligned}
$$

An example.

$$
\begin{aligned}
\left\langle a_{0}, a_{2}, a_{1}\right\rangle<\left\langle a_{0}, a_{2}\right\rangle & <\left\langle a_{0}\right\rangle \\
& \wedge \\
\left\langle a_{2}, a_{1}\right\rangle & <\left\langle a_{2}\right\rangle \\
& \wedge
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle a_{n}, a_{0}, a_{2}, a_{1}\right\rangle<\left\langle a_{n}, a_{0}, a_{2}\right\rangle<\left\langle a_{n}, a_{0}\right\rangle<\left\langle a_{n}, a_{2}, a_{1}\right\rangle \\
& \quad<\left\langle a_{n}, a_{2}\right\rangle<\cdots<\left\langle a_{n}, a_{4}\right\rangle<\cdots<\left\langle a_{n}, a_{2 n}\right\rangle<\cdots<\left\langle a_{n}\right\rangle
\end{aligned}
$$

$$
\left\langle a_{n+1}\right\rangle
$$

Formally.

We define two formulas $\psi(\sigma, Y)$:

$$
\begin{aligned}
& {[(\neg \exists j \in X)(\sigma(|\sigma|-1), j) \in Y] \wedge} \\
& \left(R(\sigma(|\sigma|-1))-\bigcup_{\{a:(\exists j \in X)(a, j) \in Y\}} R(a)=\{f(\sigma(|\sigma|-1))\}\right)
\end{aligned}
$$

and $\theta(n, Y)$:

$$
\begin{aligned}
(\exists \sigma \in T)[(\psi(\sigma, Y) \wedge((\forall \tau \in T) \psi(\tau, Y) & \rightarrow \sigma \leq \text { кв } \tau)) \\
& \wedge(n=\sigma(|\sigma|-1))] .
\end{aligned}
$$

ATR $_{0}$ contains axioms which guarentee the existence of a set Y such that $H_{\theta}(\mathrm{KB}(T), Y)$ holds.
We then verify that Y orders all of A, is well founded, and satsifies the desired property.

Related principles.

STO(F): Let $P=(A, B, R)$ be a matching problem with a unique solution in which every element has finitely many permissible matches. Then there is a well-order $\left(A,<_{A}\right)$ such that for every $a \in A$, there is a unique $b \in B$ such that

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

STO (ω) : Let $P=(A, B, R)$ be a matching problem with a unique solution in which every element has finitely many permissible matches. Then there is a well-order $\left(A,<_{A}\right)$ of type ω such that for every $a \in A$, there is a unique $b \in B$ such that

$$
R(a)-R\left(\left\{a^{\prime}: a^{\prime}<_{A} a\right\}\right)=\{b\} .
$$

Regarding the open reversal.

Theorem (Hughes)
Over $\mathrm{RCA}_{0}, \mathrm{ACA}_{0}$ and $\mathrm{STO}(\omega)$ are equivalent.

Theorem (Hughes)
The principle $\mathrm{STO}(\mathrm{F})$ is provable in $\mathrm{ACA}_{\mathrm{o}}$.

Theorem (Hughes)
Over RCA $_{0}$, STO(F) implies WKL ${ }_{0}$.

Future directions.

- Fully classify STO and STO(F) in the reverse mathematical hierarchy.
- Analyze necessary and sufficient conditions for the existence of a solution in the general case.
- Consider matching problems in which R is enumerated.

