# Reverse mathematics and marriage problems with finitely many solutions 

Noah A. Hughes<br>noah.hughes@uconn.edu University of Connecticut

Joint work with Jeff Hirst, Appalachian State University

Wednesday, May 25, 2016

Association for Symbolic Logic 2016 North American Annual Meeting

## Reverse Mathematics

Goal: To determine the exact set existence axioms needed to prove a familiar theorem.

Method: Prove results of the form $\mathrm{RCA}_{0} \vdash \mathbf{A X} \leftrightarrow \mathbf{T H M}$
The base system $\mathrm{RCA}_{0}$ :
Second order arithmetic: integers $n$ and sets of integers $X$
Induction scheme: restricted to $\Sigma_{0}^{1}$ formulas

$$
(\psi(0) \wedge \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n)
$$

where $\psi(n)$ has (at most) one number quantifier.
Recursive set comprehension:

$$
\begin{aligned}
& \text { If } \theta \in \Sigma_{0}^{1} \text { and } \psi \in \Pi_{0}^{1} \text {, and } \forall n(\theta(n) \leftrightarrow \psi(n)) \text {, } \\
& \text { then there is a set } X \text { such that } \forall n(n \in X \leftrightarrow \theta(n)) \text {. }
\end{aligned}
$$

## More set comprehension axioms

Weak König's Lemma: $\left(W K L_{0}\right)$ If $T$ is an infinite tree in which each node is labeled 0 or 1 , then $T$ contains an infinite path.

Arithmetical comprehension: $\left(\mathrm{ACA}_{0}\right)$ If $\theta(n)$ does not have any set quantifiers, then there is an $X$ such that $\forall n(n \in X \leftrightarrow \theta(n))$.

## Theorem (Friedman)

$\mathrm{RCA}_{0}$ proves that the following are equivalent:

1. $\mathrm{ACA}_{0}$
2. (KL) König's Lemma: If $T$ is an infinite tree and every level of $T$ is finite, then $T$ contains an infinite path.

Marriage problems

Marriage problems

Marriage problems


Marriage problems$\square$

## Marriage problems



Marriage problems


Marriage problems


Marriage problems


## Notation

A marriage problem $M$ consists of three sets: $B, G$ and $R$ $B$ is the set of boys, $G$ is the set of girls, and $R \subseteq B \times G$ where $(b, g) \in R$ implies that "boy $b$ knows girl $g$ "

## Notation

A marriage problem $M$ consists of three sets: $B, G$ and $R$
$B$ is the set of boys, $G$ is the set of girls, and $R \subseteq B \times G$ where $(b, g) \in R$ implies that "boy $b$ knows girl $g$ "
$M$ is a finite marriage problem if $B$ is a finite set
$M$ is an infinite marriage problem otherwise
$M$ is a bounded marriage problem if there is a function $h: B \rightarrow G$ so that for each $b \in B, G(b) \subseteq\{0,1, \ldots, h(b)\}$

## Notation

A marriage problem $M$ consists of three sets: $B, G$ and $R$
$B$ is the set of boys, $G$ is the set of girls, and $R \subseteq B \times G$ where $(b, g) \in R$ implies that "boy $b$ knows girl $g$ "
$M$ is a finite marriage problem if $B$ is a finite set
$M$ is an infinite marriage problem otherwise
$M$ is a bounded marriage problem if there is a function $h: B \rightarrow G$ so that for each $b \in B, G(b) \subseteq\{0,1, \ldots, h(b)\}$
$G(b)$ is convenient shorthand for the set of girls $b$ knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\} .
$$

$G(b)$ is not a function.

## Notation

A marriage problem $M$ consists of three sets: $B, G$ and $R$
$B$ is the set of boys, $G$ is the set of girls, and $R \subseteq B \times G$ where $(b, g) \in R$ implies that "boy $b$ knows girl $g$ "
$M$ is a finite marriage problem if $B$ is a finite set
$M$ is an infinite marriage problem otherwise
$M$ is a bounded marriage problem if there is a function $h: B \rightarrow G$ so that for each $b \in B, G(b) \subseteq\{0,1, \ldots, h(b)\}$
$G(b)$ is convenient shorthand for the set of girls $b$ knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\}
$$

$G(b)$ is not a function.
Assume $G(b)$ to be finite for all $b \in B$.

## Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.

## Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
Example:


## Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
Example:


## Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
Example:

$f$ is a solution.

When does a marriage problem have...

When does a marriage problem have...
a solution?

## When does a marriage problem have...

## a solution?

Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.

## When does a marriage problem have...

## a solution?

Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
a unique solution?

## When does a marriage problem have...

## a solution?

Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
a unique solution?
Theorem (Hirst, Hughes)
A marriage problem $M=(B, G, R)$ has a unique solution if and only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

Marriage problems with $k$ many solutions

## Marriage problems with $k$ many solutions

Theorem (Hirst, Hughes)
If a marriage problem $M=(B, G, R)$ has exactly $k$ solutions, $f_{1}, \ldots, f_{k}$, then there is a finite set $B_{0} \subset B$ such that for all $i<j \leq k$ and $b \in B$, if $f_{i}(b) \neq f_{j}(b)$ then $b \in B_{0}$.

## Marriage problems with $k$ many solutions

Theorem (Hirst, Hughes)
If a marriage problem $M=(B, G, R)$ has exactly $k$ solutions, $f_{1}, \ldots, f_{k}$, then there is a finite set $B_{0} \subset B$ such that for all $i<j \leq k$ and $b \in B$, if $f_{i}(b) \neq f_{j}(b)$ then $b \in B_{0}$.

Theorem (Hirst, Hughes)
A marriage problem $M=(B, G, R)$ has exactly $k$ solutions if and only if there is some finite set of boys such that $M$ restricted to this set has exactly $k$ solutions and each solution extends uniquely to a solution of $M$.

## Ordering marriage problems with $k$ many solutions

## Theorem (Hirst, Hughes)

Suppose $M=(B, G, R)$ is a marriage problem with exactly $k$ solutions: $f_{1}, f_{2}, \ldots, f_{k}$. Then there is a finite set $F \subseteq B$ and a sequence of $k$ sequences $\left\langle b_{j}^{i}\right\rangle_{j \geq 1}$ for $1 \leq i \leq k$ such that the following hold:
(i) $M$ restricted to $F$ has exactly $k$ solutions, each corresponding to $f_{i}$ restricted to $F$ for some $i$.
(ii) For each $1 \leq i \leq k$, the sequence $\left\langle b_{j}^{i}\right\rangle_{j \geq 1}$ enumerates all the boys not included in $F$.
(iii) For each $1 \leq i \leq k$ and each $n \in \mathbb{N}$,

$$
\left|G\left(\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{n}^{i}\right\}\right)-f_{i}(F)\right|=n
$$

## Reverse mathematics and marriage theorems

Often, the strength of the marriage theorems we've considered depend upon whether the underlying marriage problem is finite, bounded or infinite.
Theorem
Over $\mathrm{RCA}_{0}$, the following are equivalent:

1. $\mathrm{ACA}_{0}$
2. (Hirst.) An infinite marriage problem $M=(B, G, R)$ has a solution only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
3. (Hirst, Hughes.) An infinite marriage problem $M=(B, G, R)$ has a unique solution only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1$, $\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.
4. (Hirst, Hughes.) An infinite marriage problem $M=(B, G, R)$ has exactly $k$ solutions only if there is some finite set of boys such that $M$ restricted to this set has exactly $k$ solutions and each solution extends uniquely to a solution of $M$.

## What to prove, what to prove?

Theorem
Over $\mathrm{RCA}_{0}$, the following are equivalent:

1. $\mathrm{ACA}_{0}$
2. An infinite marriage problem $M=(B, G, R)$ has exactly $k$ solutions only if there is some finite set of boys such that $M$ restricted to this set has exactly $k$ solutions and each solution extends uniquely to a solution of $M$.

Equivalently:

$$
\mathrm{RCA}_{0} \vdash\left(\mathrm{ACA}_{0} \Rightarrow \text { Item } 2\right) \wedge\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
$$

## What to prove, what to prove?

Theorem
Over $\mathrm{RCA}_{0}$, the following are equivalent:

1. $\mathrm{ACA}_{0}$
2. An infinite marriage problem $M=(B, G, R)$ has exactly $k$ solutions only if there is some finite set of boys such that $M$ restricted to this set has exactly $k$ solutions and each solution extends uniquely to a solution of $M$.

Equivalently:

$$
\mathrm{RCA}_{0} \vdash\left(\mathrm{ACA}_{0} \Rightarrow \text { Item } 2\right) \wedge\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
$$

## A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

## A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

$$
\begin{aligned}
((\text { Item } 2 \Rightarrow \mathrm{KL}) \wedge(\mathrm{KL} \Longleftrightarrow & \left.\left.\mathrm{ACA}_{0}\right)\right) \\
& \Longrightarrow\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
\end{aligned}
$$

## A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

$$
\left((\text { Item } 2 \Rightarrow \mathrm{KL}) \wedge\left(\mathrm{KL} \Longleftrightarrow \mathrm{ACA}_{0}\right)\right)
$$

$\Longrightarrow\left(\right.$ Item $\left.2 \Rightarrow A C A_{0}\right)$

Goal:
Use Item 2 to prove König's lemma.

## A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

$$
\begin{aligned}
((\text { Item } 2 \Rightarrow \mathrm{KL}) \wedge(\mathrm{KL} \Longleftrightarrow & \left.\left.\mathrm{ACA}_{0}\right)\right) \\
& \Longrightarrow\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
\end{aligned}
$$

Goal:

$$
\text { Use Item } 2 \text { to prove König's lemma. }
$$

The contrapositive of König's lemma will be easier to prove.
Theorem
If $T$ is a tree with no infinite paths and every level of $T$ is finite, then $T$ is a finite tree.

## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Add a boy.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society.


A (sketch of a) reversal
Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are $k$ solutions.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are $k$ solutions.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are $k$ solutions.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are $k$ solutions.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are $k$ solutions.


## A (sketch of a) reversal

Here's a tree with no infinite paths. There are $k$ solutions. By Item 2, the finite set $F$ exists. Boy 1 and any successor of Boy 1 must be in $F$. The tree is finite.


## Reverse mathematics and marriage problems (cont.)

## Theorem

( $\mathrm{RCA}_{0}$ ) If $M=(B, G, R)$ is a marriage problem with a unique solution, then some boy knows exactly one girl.

## Theorem

Over $\mathrm{RCA}_{0}$, the following are equivalent:

1. $\mathrm{WKL}_{0}$
2. If a marriage problem $M=(B, G, R)$ has exactly $k$ solutions, $f_{1}, \ldots, f_{k}$, then there is a finite set $B_{0} \subset B$ such that for all $i<j \leq k$ and $b \in B$, if $f_{i}(b) \neq f_{j}(b)$ then $b \in B_{0}$.

## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Add boys.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. There are exactly two solutions which differ at every boy.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. There are exactly two solutions which differ at every boy.


## A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. There are exactly two solutions which differ at every boy. By Item 2, all boys are in a finite set. The tree is finite.


## References

[1] Marshall Hall Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926. DOI 10.1090/S0002-9904-1948-09098-X. MR0027033 (10,238g)
[2] Philip Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30. DOI 10.1112/jlms/s1-10.37.26.
[3] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
[4] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions., Arch. Math. Logic 54 (2015), 49-57. DOI 10.1007/s00153-014-0401-z.
[5] $\qquad$ , Reverse mathematics and marriage problems with finitely many solutions., Arch. Math. Logic. To appear.
[6] Harvey M. Friedman, Systems of second order arithmetic with restricted induction, I, II (abstracts), J. Symbolic Logic 41 (1976), no. 2, 557-559.
[7] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007 MR2517689.

Thank you!

