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Reverse Mathematics

Goal: To determine the exact set existence axioms needed to prove
a familiar theorem.

Method: Prove results of the form RCA0 ` AX↔ THM

The base system RCA0:

Second order arithmetic: integers n and sets of integers X

Induction scheme: restricted to Σ1
0 formulas

(ψ(0) ∧ ∀n(ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) has (at most) one number quantifier.

Recursive set comprehension:
If θ ∈ Σ1

0 and ψ ∈ Π1
0, and ∀n(θ(n)↔ ψ(n)),

then there is a set X such that ∀n(n ∈ X ↔ θ(n)).



More set comprehension axioms

Weak König’s Lemma: (WKL0) If T is an infinite tree in which
each node is labeled 0 or 1, then T contains an infinite path.

Arithmetical comprehension: (ACA0) If θ(n) does not have any set
quantifiers, then there is an X such that ∀n(n ∈ X ↔ θ(n)).

Theorem (Friedman)

RCA0 proves that the following are equivalent:

1. ACA0

2. (KL) König’s Lemma: If T is an infinite tree and every level
of T is finite, then T contains an infinite path.
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Notation

A marriage problem M consists of three sets: B, G and R

B is the set of boys, G is the set of girls, and R ⊆ B × G

where (b, g) ∈ R implies that “boy b knows girl g”

M is a finite marriage problem if B is a finite set

M is an infinite marriage problem otherwise

M is a bounded marriage problem if there is a function h : B → G
so that for each b ∈ B, G (b) ⊆ {0, 1, . . . , h(b)}

G (b) is convenient shorthand for the set of girls b knows, i.e.

G (b) = {g ∈ G | (b, g) ∈ R}.

G (b) is not a function.

Assume G (b) to be finite for all b ∈ B.
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Match makers

A solution to M = (B,G ,R) is an injection

f : B → G

such that (b, f (b)) ∈ R for every b ∈ B.

Example:
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0→ 4

1→ 7

2→ 6

3→ 8
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When does a marriage problem have...

a solution?

Theorem (Hall)

A marriage problem M = (B,G ,R) has a solution if and only if
|G (B0)| ≥ |B0| for every B0 ⊂ B.

a unique solution?

Theorem (Hirst, Hughes)

A marriage problem M = (B,G ,R) has a unique solution if and
only if there is an enumeration of the boys 〈bi 〉i≥1 such that for
every n ≥ 1, |G ({b1, b2, . . . , bn})| = n.
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Marriage problems with k many solutions

Theorem (Hirst, Hughes)

If a marriage problem M = (B,G ,R) has exactly k solutions,
f1, . . . , fk , then there is a finite set B0 ⊂ B such that for all
i < j ≤ k and b ∈ B, if fi (b) 6= fj(b) then b ∈ B0.

Theorem (Hirst, Hughes)

A marriage problem M = (B,G ,R) has exactly k solutions if and
only if there is some finite set of boys such that M restricted to
this set has exactly k solutions and each solution extends uniquely
to a solution of M.
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Ordering marriage problems with k many solutions

Theorem (Hirst, Hughes)

Suppose M = (B,G ,R) is a marriage problem with exactly k
solutions: f1, f2, . . . , fk . Then there is a finite set F ⊆ B and a
sequence of k sequences 〈bij 〉j≥1 for 1 ≤ i ≤ k such that the
following hold:

(i) M restricted to F has exactly k solutions, each corresponding
to fi restricted to F for some i .

(ii) For each 1 ≤ i ≤ k , the sequence 〈bij 〉j≥1 enumerates all the
boys not included in F .

(iii) For each 1 ≤ i ≤ k and each n ∈ N,

|G ({bi1, bi2, . . . , bin})− fi (F )| = n



Reverse mathematics and marriage theorems
Often, the strength of the marriage theorems we’ve considered
depend upon whether the underlying marriage problem is finite,
bounded or infinite.

Theorem
Over RCA0, the following are equivalent:

1. ACA0

2. (Hirst.) An infinite marriage problem M = (B,G ,R) has a
solution only if |G (B0)| ≥ |B0| for every B0 ⊂ B.

3. (Hirst, Hughes.) An infinite marriage problem M = (B,G ,R)
has a unique solution only if there is an enumeration of the
boys 〈bi 〉i≥1 such that for every n ≥ 1,
|G ({b1, b2, . . . , bn})| = n.

4. (Hirst, Hughes.) An infinite marriage problem M = (B,G ,R)
has exactly k solutions only if there is some finite set of boys
such that M restricted to this set has exactly k solutions and
each solution extends uniquely to a solution of M.



What to prove, what to prove?

Theorem
Over RCA0, the following are equivalent:

1. ACA0

2. An infinite marriage problem M = (B,G ,R) has exactly k
solutions only if there is some finite set of boys such that M
restricted to this set has exactly k solutions and each solution
extends uniquely to a solution of M.

Equivalently:

RCA0 ` (ACA0 ⇒ Item 2) ∧ (Item 2⇒ ACA0).
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A (sketch of a) reversal

Recall ACA0 is equivalent to König’s lemma.

((Item 2 ⇒ KL) ∧ (KL ⇐⇒ ACA0))

=⇒ (Item 2⇒ ACA0)

Goal:
Use Item 2 to prove König’s lemma.

The contrapositive of König’s lemma will be easier to prove.

Theorem
If T is a tree with no infinite paths and every level of T is finite,
then T is a finite tree.
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A (sketch of a) reversal
Here’s a tree with no infinite paths. There are k solutions. By Item
2, the finite set F exists. Boy 1 and any successor of Boy 1 must
be in F . The tree is finite.



Reverse mathematics and marriage problems (cont.)

Theorem
(RCA0) If M = (B,G ,R) is a marriage problem with a unique
solution, then some boy knows exactly one girl.

Theorem
Over RCA0, the following are equivalent:

1. WKL0

2. If a marriage problem M = (B,G ,R) has exactly k solutions,
f1, . . . , fk , then there is a finite set B0 ⊂ B such that for all
i < j ≤ k and b ∈ B, if fi (b) 6= fj(b) then b ∈ B0.



A (sketch of a) reversal

Here’s a tree with no infinite paths. Nodes are girls.



A (sketch of a) reversal

Here’s a tree with no infinite paths. Nodes are girls. Add boys.
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society. There are exactly two solutions which differ at every boy.
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A (sketch of a) reversal
Here’s a tree with no infinite paths. Nodes are girls. Complete the
society. There are exactly two solutions which differ at every boy.
By Item 2, all boys are in a finite set. The tree is finite.
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Thank you!


