Reverse mathematics and marriage problems:
 a few new results

Noah A. Hughes hughesna@email.appstate.edu
Appalachian State University

Friday, March 27, 2015

Appalachian State University
Mathematical Sciences Colloquium Series

Marriage problems

Marriage problems

Marriage problems

Marriage problems\square

Marriage problems

Marriage problems

Marriage problems

Marriage problems

Notation

A marriage problem M consists of three sets: B, G and R
B is the set of boys, G is the set of girls, and $R \subseteq B \times G$ where $(b, g) \in R$ implies that "boy b knows girl g "

Notation

A marriage problem M consists of three sets: B, G and R
B is the set of boys, G is the set of girls, and $R \subseteq B \times G$ where $(b, g) \in R$ implies that "boy b knows girl g "
M is a finite marriage problem if B is a finite set
M is an infinite marriage problem otherwise

Notation

A marriage problem M consists of three sets: B, G and R
B is the set of boys, G is the set of girls, and $R \subseteq B \times G$
where $(b, g) \in R$ implies that "boy b knows girl g "
M is a finite marriage problem if B is a finite set
M is an infinite marriage problem otherwise
$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\}
$$

$G(b)$ is not a function.

Notation

A marriage problem M consists of three sets: B, G and R
B is the set of boys, G is the set of girls, and $R \subseteq B \times G$
where $(b, g) \in R$ implies that "boy b knows girl g "
M is a finite marriage problem if B is a finite set
M is an infinite marriage problem otherwise
$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\}
$$

$G(b)$ is not a function.
Assume $G(b)$ to be finite for all $b \in B$.

Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.

Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
Example:

Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
Example:

Match makers

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
Example:

f is a solution.

When does a marriage problem have...

When does a marriage problem have...
a solution?

When does a marriage problem have...
a solution?
Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.

When does a marriage problem have...
a solution?
Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$. a unique solution?

When does a marriage problem have...
a solution?
Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
a unique solution?
Theorem (Hirst, Hughes)
A marriage problem $M=(B, G, R)$ has a unique solution if and only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

When does a marriage problem have...
a solution?
Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
a unique solution?
Theorem (Hirst, Hughes)
A marriage problem $M=(B, G, R)$ has a unique solution if and only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.
k many solutions?

When does a marriage problem have...

a solution?
Theorem (Hall)
A marriage problem $M=(B, G, R)$ has a solution if and only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
a unique solution?
Theorem (Hirst, Hughes)
A marriage problem $M=(B, G, R)$ has a unique solution if and only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.
k many solutions?
Theorem (Hirst, Hughes)
A marriage problem $M=(B, G, R)$ has exactly k solutions if and only if there is some finite set of boys such that M restricted to this set has exactly k solutions and each solution extends uniquely to a solution of M.

Ordering a marriage problem with k many solutions

Theorem (Hirst, Hughes)

Suppose $M=(B, G, R)$ is a marriage problem with exactly k solutions: $f_{1}, f_{2}, \ldots, f_{k}$. Then there is a finite set $F \subseteq B$ and a sequence of k sequences $\left\langle b_{j}^{i}\right\rangle_{j \geq 1}$ for $1 \leq i \leq k$ such that the following hold:
(i) M restricted to F has exactly k solutions, each corresponding to f_{i} restricted to F for some i.
(ii) For each $1 \leq i \leq k$, the sequence $\left\langle b_{j}^{i}\right\rangle_{j \geq 1}$ enumerates all the boys not included in F.
(iii) For each $1 \leq i \leq k$ and each $n \in \mathbb{N}$,

$$
\left|G\left(\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{n}^{i}\right\}\right)-f_{i}(F)\right|=n
$$

Reverse mathematics

An introduction

Reverse mathematics is motivated by a foundational question:
Question: Exactly which axioms do we really need to prove a given theorem?

The program of reverse mathematics seeks to prove results of the form:

Over a weak base theory B, axiom A is equivalent to theorem T.
This naturally leads to the idea of the strength of a theorem.
To sharpen this notion of strength, we restrict our attention to set existence axioms.
I.e., the more complex sets axiom A asserts the existence of, the stronger the theorem T.

A weak base theory

We take RCA_{0} as our weak base theory:
axioms for arithmetic;
limited induction; comprehension for computable sets.

RCA stands for "recursive comprehension axiom" (recursive \sim computable)
RCA_{0} proves the intermediate value theorem and the uncountability of \mathbb{R}.
RCA_{0} does not prove the existence of Riemann integrals.

Another set comprehension axiom

ACA A_{0} adds comprehension for arithmetical sets.

This adds an immense amount of set comprehension, e.g., the existence of many noncomputable sets.
$A C A_{0}$ is strong enough to prove the Bolzano-Weierstraß theorem and that every countable vector space over \mathbb{Q} has a basis.

Theorem (Friedman)
Over RCA_{0}, the following are equivalent:

1. ACA_{0}
2. (KL) König's Lemma: If T is an infinite tree and every level of T is finite, then T contains an infinite path.

Reverse mathematics and marriage theorems

In general, the strength of the marriage theorems we've considered depend upon whether the underlying marriage problem is finite or infinite.

Theorem

The following are provable in RCA_{0}

1. (Hirst.) A finite marriage problem $M=(B, G, R)$ has a solution only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
2. (Hirst, Hughes.) A finite marriage problem $M=(B, G, R)$ has a unique solution only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.
3. (Hirst, Hughes.) A finite marriage problem $M=(B, G, R)$ has exactly k solutions only if there is some finite set of boys such that M restricted to this set has exactly k solutions and each solution extends uniquely to a solution of M.

Reverse mathematics and marriage theorems

If the underlying marriage problem is infinite, the marriage theorem becomes much stronger:

Theorem
Over RCA_{0}, the following are equivalent:

1. ACA_{0}
2. (Hirst.) An infinite marriage problem $M=(B, G, R)$ has a solution only if $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$.
3. (Hirst, Hughes.) An infinite marriage problem $M=(B, G, R)$ has a unique solution only if there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1$, $\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.
4. (Hirst, Hughes.) An infinite marriage problem $M=(B, G, R)$ has exactly k solutions only if there is some finite set of boys such that M restricted to this set has exactly k solutions and each solution extends uniquely to a solution of M.

What to prove, what to prove?

Theorem
Over RCA_{0}, the following are equivalent:

1. ACA_{0}
2. An infinite marriage problem $M=(B, G, R)$ has exactly k solutions only if there is some finite set of boys such that M restricted to this set has exactly k solutions and each solution extends uniquely to a solution of M.

Equivalently:

$$
\begin{aligned}
\mathrm{RCA}_{0} \vdash A C A_{0} & \Longleftrightarrow \text { Item } 2 . \\
& \left(\mathrm{ACA}_{0} \Rightarrow \text { Item } 2\right) \wedge\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right) .
\end{aligned}
$$

What to prove, what to prove?

Theorem
Over RCA_{0}, the following are equivalent:

1. ACA_{0}
2. An infinite marriage problem $M=(B, G, R)$ has exactly k solutions only if there is some finite set of boys such that M restricted to this set has exactly k solutions and each solution extends uniquely to a solution of M.

Equivalently:

$$
\begin{aligned}
\mathrm{RCA}_{0} & \vdash \mathrm{ACA}_{0} \\
& \Longleftrightarrow \text { Item } 2 ; \\
& \vdash\left(\mathrm{ACA}_{0} \Rightarrow \text { Item } 2\right) \wedge\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right) .
\end{aligned}
$$

A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

$$
\begin{aligned}
\left(\left(\mathrm{KL} \Longleftrightarrow \mathrm{ACA}_{0}\right) \wedge(\text { Item } 2\right. & \Rightarrow \mathrm{KL})) \\
& \Longrightarrow\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
\end{aligned}
$$

A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

$$
\begin{aligned}
\left(\left(\mathrm{KL} \Longleftrightarrow \mathrm{ACA}_{0}\right) \wedge(\text { Item } 2\right. & \Rightarrow \mathrm{KL})) \\
& \Longrightarrow\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
\end{aligned}
$$

Goal:
Use Item 2 to prove König's lemma.

A (sketch of a) reversal

Recall $A C A_{0}$ is equivalent to König's lemma.

$$
\begin{aligned}
\left(\left(\mathrm{KL} \Longleftrightarrow \mathrm{ACA}_{0}\right) \wedge(\text { Item } 2\right. & \Rightarrow \mathrm{KL})) \\
& \Longrightarrow\left(\text { Item } 2 \Rightarrow \mathrm{ACA}_{0}\right)
\end{aligned}
$$

Goal:

$$
\text { Use Item } 2 \text { to prove König's lemma. }
$$

The contrapositive of König's lemma will be easier to prove.
Theorem
If T is a tree with no infinite paths and every level of T is finite, then T is a finite tree.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Add a boy.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society.

A (sketch of a) reversal
Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are k solutions.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are k solutions.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are k solutions.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are k solutions.

A (sketch of a) reversal

Here's a tree with no infinite paths. Nodes are girls. Complete the society. Add $k-1$ girls to the first boy. There are k solutions.

A (sketch of a) reversal

Here's a tree with no infinite paths. There are k solutions. By Item 2, the finite set F exists. Boy 1 and any successor of Boy 1 must be in F. The tree is finite.

References

[1] Marshall Hall Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926. DOI 10.1090/S0002-9904-1948-09098-X. MR0027033 (10,238g)
[2] Philip Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30. DOI 10.1112/jlms/s1-10.37.26.
[3] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
[4] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions., Arch. Math. Logic 54 (2015), 49-57. DOI 10.1007/s00153-014-0401-z.
[5] Harvey M. Friedman, Systems of second order arithmetic with restricted induction, I, II (abstracts), J. Symbolic Logic 41 (1976), no. 2, 557-559.
[6] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007 MR2517689.

Thank you!

