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Notation

A marriage problem M consists of three sets: B, G and R

B is the set of boys, G is the set of girls, and R ⊆ B × G

where (b, g) ∈ R implies that “boy b knows girl g”

M is a finite marriage problem if B is a finite set

M is an infinite marriage problem otherwise

G (b) is convenient shorthand for the set of girls b knows, i.e.

G (b) = {g ∈ G | (b, g) ∈ R}.

G (b) is not a function.

Assume G (b) to be finite for all b ∈ B.
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Match makers

A solution to M = (B,G ,R) is an injection

f : B → G

such that (b, f (b)) ∈ R for every b ∈ B.

Example:
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A solution to M = (B,G ,R) is an injection

f : B → G

such that (b, f (b)) ∈ R for every b ∈ B.

Example:

B = {0, 1, 2, 3}
G = {4, 5, 6, 7, 8}

f =


0→ 4

1→ 7

2→ 6

3→ 8

f is a solution.
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When does a marriage problem have...

a solution?

Theorem (Hall)

A marriage problem M = (B,G ,R) has a solution if and only if
|G (B0)| ≥ |B0| for every B0 ⊂ B.

a unique solution?

Theorem (Hirst, Hughes)

A marriage problem M = (B,G ,R) has a unique solution if and
only if there is an enumeration of the boys 〈bi 〉i≥1 such that for
every n ≥ 1, |G ({b1, b2, . . . , bn})| = n.

k many solutions?

Theorem (Hirst, Hughes)

A marriage problem M = (B,G ,R) has exactly k solutions if and
only if there is some finite set of boys such that M restricted to
this set has exactly k solutions and each solution extends uniquely
to a solution of M.
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Ordering a marriage problem with k many solutions

Theorem (Hirst, Hughes)

Suppose M = (B,G ,R) is a marriage problem with exactly k
solutions: f1, f2, . . . , fk . Then there is a finite set F ⊆ B and a
sequence of k sequences 〈bij 〉j≥1 for 1 ≤ i ≤ k such that the
following hold:

(i) M restricted to F has exactly k solutions, each corresponding
to fi restricted to F for some i .

(ii) For each 1 ≤ i ≤ k , the sequence 〈bij 〉j≥1 enumerates all the
boys not included in F .

(iii) For each 1 ≤ i ≤ k and each n ∈ N,

|G ({bi1, bi2, . . . , bin})− fi (F )| = n



Reverse mathematics



An introduction

Reverse mathematics is motivated by a foundational question:

Question: Exactly which axioms do we really need to prove a given
theorem?

The program of reverse mathematics seeks to prove results of the
form:

Over a weak base theory B, axiom A is equivalent to theorem T .

This naturally leads to the idea of the strength of a theorem.

To sharpen this notion of strength, we restrict our attention to set
existence axioms.

I.e., the more complex sets axiom A asserts the existence of, the
stronger the theorem T .



A weak base theory

We take RCA0 as our weak base theory:

axioms for arithmetic;
limited induction;
comprehension for computable sets.

RCA stands for “recursive comprehension axiom”
(recursive ∼ computable)

RCA0 proves the intermediate value theorem and the
uncountability of R.

RCA0 does not prove the existence of Riemann integrals.



Another set comprehension axiom

ACA0 adds comprehension for arithmetical sets.

This adds an immense amount of set comprehension, e.g., the
existence of many noncomputable sets.

ACA0 is strong enough to prove the Bolzano-Weierstraß theorem
and that every countable vector space over Q has a basis.

Theorem (Friedman)

Over RCA0, the following are equivalent:

1. ACA0

2. (KL) König’s Lemma: If T is an infinite tree and every level
of T is finite, then T contains an infinite path.



Reverse mathematics and marriage theorems

In general, the strength of the marriage theorems we’ve considered
depend upon whether the underlying marriage problem is finite or
infinite.

Theorem
The following are provable in RCA0

1. (Hirst.) A finite marriage problem M = (B,G ,R) has a
solution only if |G (B0)| ≥ |B0| for every B0 ⊂ B.

2. (Hirst, Hughes.) A finite marriage problem M = (B,G ,R) has
a unique solution only if there is an enumeration of the boys
〈bi 〉i≥1 such that for every n ≥ 1, |G ({b1, b2, . . . , bn})| = n.

3. (Hirst, Hughes.) A finite marriage problem M = (B,G ,R) has
exactly k solutions only if there is some finite set of boys such
that M restricted to this set has exactly k solutions and each
solution extends uniquely to a solution of M.



Reverse mathematics and marriage theorems

If the underlying marriage problem is infinite, the marriage theorem
becomes much stronger:

Theorem
Over RCA0, the following are equivalent:

1. ACA0

2. (Hirst.) An infinite marriage problem M = (B,G ,R) has a
solution only if |G (B0)| ≥ |B0| for every B0 ⊂ B.

3. (Hirst, Hughes.) An infinite marriage problem M = (B,G ,R)
has a unique solution only if there is an enumeration of the
boys 〈bi 〉i≥1 such that for every n ≥ 1,
|G ({b1, b2, . . . , bn})| = n.

4. (Hirst, Hughes.) An infinite marriage problem M = (B,G ,R)
has exactly k solutions only if there is some finite set of boys
such that M restricted to this set has exactly k solutions and
each solution extends uniquely to a solution of M.



What to prove, what to prove?

Theorem
Over RCA0, the following are equivalent:

1. ACA0

2. An infinite marriage problem M = (B,G ,R) has exactly k
solutions only if there is some finite set of boys such that M
restricted to this set has exactly k solutions and each solution
extends uniquely to a solution of M.

Equivalently:

RCA0 ` ACA0 ⇐⇒ Item 2.

(ACA0 ⇒ Item 2) ∧ (Item 2⇒ ACA0).
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A (sketch of a) reversal

Recall ACA0 is equivalent to König’s lemma.

((KL ⇐⇒ ACA0) ∧ (Item 2 ⇒ KL))

=⇒ (Item 2⇒ ACA0)

Goal:
Use Item 2 to prove König’s lemma.

The contrapositive of König’s lemma will be easier to prove.

Theorem
If T is a tree with no infinite paths and every level of T is finite,
then T is a finite tree.
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A (sketch of a) reversal
Here’s a tree with no infinite paths. Nodes are girls. Complete the
society. Add k − 1 girls to the first boy. There are k solutions.



A (sketch of a) reversal
Here’s a tree with no infinite paths. There are k solutions. By Item
2, the finite set F exists. Boy 1 and any successor of Boy 1 must
be in F . The tree is finite.
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Thank you!


