Reverse Mathematics and Marriage Problems

Noah A. Hughes
hughesna@appstate.edu
Appalachian State University
Boone, NC

Saturday, November 1, 2014

UNCG Regional Mathematics and Statistics Conference The University of North Carolina Greensboro

Agenda

- I: Marriage Problems
- I: Previous Results
- I: New Results
- II: Reverse Mathematics

I: Marriage Problems

Marriage Problems

Marriage Problems

Marriage Problems-

-

Marriage Problems

Marriage Problems

Some Notation

A marriage problem M consists of three sets B, G and R.
B is the set of boys,
G is the set of girls, and
R is the relation between the boys and girls.
$R \subset B \times G$ where $(b, g) \in R$ means " b knows g ".

Some Notation

A marriage problem M consists of three sets B, G and R.
B is the set of boys,
G is the set of girls, and
R is the relation between the boys and girls.
$R \subset B \times G$ where $(b, g) \in R$ means " b knows g ".
$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\} .
$$

$G(b)$ is not a function.

Some Notation

A marriage problem M consists of three sets B, G and R.
B is the set of boys,
G is the set of girls, and
R is the relation between the boys and girls.
$R \subset B \times G$ where $(b, g) \in R$ means " b knows g ".
$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\} .
$$

$G(b)$ is not a function.
$G_{M}(b)$ denotes the set of girls b knows relative to the relation in M.

Some More Notation

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.

Some More Notation

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
M is a:
finite marriage problem if $|B|$ is finite.
infinite marriage problem if $|B|$ is not finite.
bounded marriage problem if there is a function $h: B \rightarrow G$ so that for each $b \in B, G(b) \subseteq\{0,1, \ldots, h(b)\}$.

Examples of Marriage Theorems

Examples of Marriage Theorems

Theorem
If $M=(B, G, R)$ is a finite marriage problem such that
$\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Due to Philip Hall.

Examples of Marriage Theorems

Theorem
If $M=(B, G, R)$ is a finite marriage problem such that
$\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Due to Philip Hall.

Theorem
If $M=(B, G, R)$ is an infinite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Due to Marshall Hall, Jr.

Examples of Marriage Theorems

Theorem
If $M=(B, G, R)$ is a finite marriage problem such that
$\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Due to Philip Hall.

Theorem
If $M=(B, G, R)$ is an infinite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Due to Marshall Hall, Jr. (No relation.)

A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with n boys and a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leq n}$ such that for every $1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?
In the finite case, we found the following necessary and sufficient condition.

Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with n boys and a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leq n}$ such that for every $1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?
In the finite case, we found the following necessary and sufficient condition.

Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with n boys and a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leq n}$ such that for every $1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

A New Result: Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem
If $M=(B, G, R)$ is a finite marriage problem with n boys and a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leq n}$ such that for every $1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Sketch of the proof

Lemma
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with a unique solution f, then some boy knows exactly one girl.

Sketch of the proof

Proof: Suppose we have $M=(B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_{1} be the first boy such that $\left|G\left(b_{1}\right)\right|=1$.

Sketch of the proof

Proof: Suppose we have $M=(B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_{1} be the first boy such that $\left|G\left(b_{1}\right)\right|=1$.
Define $M_{2}=\left(B-\left\{b_{1}\right\}, G-G\left(b_{1}\right), R_{2}\right)$. Because M has a unique solution, M_{2} has a unique solution, namely the restriction of f to the sets of M_{2}. Apply the lemma once more and let b_{2} be the first boy in $B-\left\{b_{1}\right\}$ such that $\left|G_{M_{2}}\left(b_{2}\right)\right|=1$.

Sketch of the proof

Proof: Suppose we have $M=(B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_{1} be the first boy such that $\left|G\left(b_{1}\right)\right|=1$.
Define $M_{2}=\left(B-\left\{b_{1}\right\}, G-G\left(b_{1}\right), R_{2}\right)$. Because M has a unique solution, M_{2} has a unique solution, namely the restriction of f to the sets of M_{2}. Apply the lemma once more and let b_{2} be the first boy in $B-\left\{b_{1}\right\}$ such that $\left|G_{M_{2}}\left(b_{2}\right)\right|=1$.
Continuing this process inductively yields the $j^{\text {th }}$ boy in our desired enumeration from

$$
M_{j}=\left(B-\left\{b_{1}, b_{2}, \ldots, b_{j-1}\right\}, G-G\left(b_{1}, b_{2}, \ldots, b_{j-1}\right), R_{j}\right)
$$

Sketch of the proof

Proof: Suppose we have $M=(B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_{1} be the first boy such that $\left|G\left(b_{1}\right)\right|=1$.
Define $M_{2}=\left(B-\left\{b_{1}\right\}, G-G\left(b_{1}\right), R_{2}\right)$. Because M has a unique solution, M_{2} has a unique solution, namely the restriction of f to the sets of M_{2}. Apply the lemma once more and let b_{2} be the first boy in $B-\left\{b_{1}\right\}$ such that $\left|G_{M_{2}}\left(b_{2}\right)\right|=1$.
Continuing this process inductively yields the $j^{\text {th }}$ boy in our desired enumeration from
$M_{j}=\left(B-\left\{b_{1}, b_{2}, \ldots, b_{j-1}\right\}, G-G\left(b_{1}, b_{2}, \ldots, b_{j-1}\right), R_{j}\right)$.
After the $n^{\text {th }}$ iteration we have $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ where for every
$1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Generalizing this result

The statement regarding finite marriage problems with unique solutions can be generalized to the infinite case. Paralleling the previous work we have:

Theorem
If $M=(B, G, R)$ is an infinite marriage problem with a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

II: Reverse Mathematics

Reverse Mathematics

Reverse mathematics is the subfield of mathematical logic dedicated to classifying the logical strength of mathematical theorems.

This is done by proving theorems equivalent to a hierarchy of axioms over a weak base axiom system.

$$
\mathrm{RCA}_{0} \quad \mathrm{WKL}_{0} \quad \mathrm{ACA}_{0} \quad \mathrm{ATR}_{0} \quad \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

RCA_{0} proves the intermediate value theorem and the uncountability of \mathbb{R}.
RCA_{0} does not prove the existence of Riemann integrals.

Equivalences

Theorem

The following are provable in RCA_{0}.
(i) $\mathrm{WKL}_{0} \Longleftrightarrow$ For every continuous function $f(x)$ on a closed and bounded interval $a \leq x \leq b$, the Riemann integral $\int_{a}^{b} f(x) d x$ exists and is finite. (Simpson)
(ii) $\mathrm{ACA}_{0} \Longleftrightarrow$ For all one-to-one functions $f: \mathbb{N} \rightarrow \mathbb{N}$ there exists a set $X \subseteq \mathbb{N}$ such that $\operatorname{Ran}(f)=X$. (Simpson)
(iii) $\mathrm{ATR}_{0} \Longleftrightarrow$ Any two well orderings are comparable. (Friedman)
(iv) $\Pi_{1}^{1}-\mathrm{CA}_{0} \Longleftrightarrow$ The Cantor/Bendixson theorem for $\mathbb{N}^{\mathbb{N}}$: Every closed set in $\mathbb{N}^{\mathbb{N}}$ is the union of a perfect closed set and a countable set. (Simpson)

Marriage Theorems and Reverse Mathematics

Jeff Hirst proved the following equivalence results:
Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Marriage Theorems and Reverse Mathematics

Jeff Hirst proved the following equivalence results:
Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Theorem
(RCA_{0}) The following are equivalent:
$1 \mathrm{ACA}_{0}$
2 If $M=(B, G, R)$ is an infinite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Marriage Theorems and Reverse Mathematics

Jeff Hirst proved the following equivalence results:
Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Theorem
(RCA_{0}) The following are equivalent:
$1 \mathrm{ACA}_{0}$
2 If $M=(B, G, R)$ is an infinite marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Theorem
$\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
$1 \mathrm{WKL}_{0}$
2 If $M=(B, G, R)$ is a bounded marriage problem such that $\left|G\left(B_{0}\right)\right| \geq\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Marriage Theorems and Reverse Mathematics

Our new results echoed the previous work:
Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leq n}$ such that for every $1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Marriage Theorems and Reverse Mathematics

Our new results echoed the previous work:
Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leq n}$ such that for every $1 \leq m \leq n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Theorem
(RCA_{0}) The following are equivalent:
$1 \mathrm{ACA}_{0}$
2 If $M=(B, G, R)$ is an infinite marriage problem with a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

Marriage Theorems and Reverse Mathematics

Theorem
(RCA_{0}) The following are equivalent:
$1 \mathrm{WKL}_{0}$
2 If $M=(B, G, R)$ is a bounded marriage problem with a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geq 1}$ such that for every $n \geq 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

Future Work

- Marriage problems with any fixed finite number of solutions.
- "Entangled societies"

References

[1] Marshall Hall Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926. DOI 10.1090/S0002-9904-1948-09098-X. MR0027033 (10,238g)
[2] Philip Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30. DOI 10.1112/jlms/s1-10.37.26.
[3] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
[4] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions, Archive for Mathematical Logic (2014). Accepted.
[5] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007 MR2517689.

