Transversal Theory and Reverse Mathematics

Noah A. Hughes hughesna@appstate.edu Appalachian State University Boone, NC

Thursday, April 3, 2014

National Conference on Undergraduate Research University of Kentucky

2	2	13	

$$X_0 = \{1, 7, 9, 4, 5\} \quad X_1 = \{2, 12, 5, 7, 19, 20, 12\}$$
$$X_2 = \{2, 13\} \qquad X_3 = \{0\}$$
$$X_4 = \{7, 9\} \qquad X_5 = \{0, 1, 2, 5, 3, 4, 8, 7, 9\}$$

Given a collection of sets $X_0, X_1, ..., X_k$, a *transversal* is a set *T* that contains exactly one **distinct** element from each set in the collection.

 $X_0 = \{1, 7, 9, 4, 5\} \quad X_1 = \{2, 12, 5, 7, 19, 20, 12\}$ $X_2 = \{2, 13\} \qquad X_3 = \{0\}$ $X_4 = \{7, 9\} \qquad X_5 = \{0, 1, 2, 5, 3, 4, 8, 7, 9\}$

Given a collection of sets $X_0, X_1, ..., X_k$, a *transversal* is a set *T* that contains exactly one **distinct** element from each set in the collection.

$$T = \{1, 12, 2, 0, 7, 3\}$$

$$X_0 = \{1, 7, 9, 4, 5\} \quad X_1 = \{2, 12, 5, 7, 19, 20, 12\}$$
$$X_2 = \{2, 13\} \qquad \qquad X_3 = \{0\}$$
$$X_4 = \{7, 9\} \qquad \qquad X_5 = \{0, 1, 2, 5, 3, 4, 8, 7, 9\}$$

Given a collection of sets $X_0, X_1, ..., X_k$, a *transversal* is a set *T* that contains exactly one **distinct** element from each set in the collection.

$$T = \{4, 19, 13, 0, 9, 8\}$$

Previous Results for Transversals

Philip Hall and Marshal Hall Jr. (no relation) pioneered transversal theory.

Theorem

(Philip Hall's Theorem) A collection of sets X_0, X_1, \ldots, X_k has a transversal if and only if the union of any m sets has cardinality greater than or equal to m.

Marshall Hall Jr. extended Philip Hall's work to the infinite case.

Theorem

(Marshall Hall's Theorem) A collection of sets X_0, X_1, \ldots has a transversal if and only if the union of any m sets has cardinality greater than or equal to m.

Unique Solutions

What are the necessary and sufficient conditions for a collection of sets to have a *unique* transversal?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA₀) A collection of sets $X_0, X_1, ..., X_k$ has a unique transversal if and only if there exists an enumeration of the sets $\langle X'_i \rangle_{i \leq k}$ such that for every $0 \leq j \leq k, |X'_0 \cup X'_1 \cup \cdots \cup X'_i| = j$.

Unique Solutions

What are the necessary and sufficient conditions for a collection of sets to have a *unique* transversal?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA₀) A collection of sets $X_0, X_1, ..., X_k$ has a unique transversal if and only if there exists an enumeration of the sets $\langle X'_i \rangle_{i \leq k}$ such that for every $0 \leq j \leq k$, $|X'_0 \cup X'_1 \cup \cdots \cup X'_j| = j$.

Example:

Reverse Mathematics

Reverse mathematics is the subfield of mathematical logic dedicated to classifying the logical strength of mathematical theorems.

This is done by proving theorems equivalent to a hierarchy of axioms over a weak base axiom system.

 RCA_0 WKL₀ ACA₀ ATR₀ $\Pi_1^1 - CA_0$

 RCA_0 proves the intermediate value theorem and the uncountability of \mathbb{R} .

RCA₀ does **not** prove the *existence of Riemann integrals.*

Equivalences

Theorem

The following are provable in RCA₀.

- (i) WKL₀ ⇔ For every continuous function f(x) on a closed bounded interval a ≤ x ≤ b, the Riemann integral ∫_a^b f(x)dx exists and is finite. (Simpson)
- (ii) ACA₀ \iff For all one-to-one functions $f : \mathbb{N} \to \mathbb{N}$ there exists a set $X \subseteq \mathbb{N}$ such that Ran(f) = X. (Simpson)
- (iii) ATR₀ ⇐⇒ Any two well orderings are comparable. (Friedman)
- (iv) $\Pi_1^1 CA_0 \iff The \text{ Cantor/Bendixson theorem for } \mathbb{N}^{\mathbb{N}}$: Every closed set in $\mathbb{N}^{\mathbb{N}}$ is the union of a perfect closed set and a countable set. (Simpson)

Results

Jeff Hirst proved that Philip Hall's theorem is provable in RCA₀.

Theorem

(RCA₀) A collection of sets $X_0, X_1, ..., X_k$ has a transversal if and only if the union of any m sets has cardinality greater than or equal to m.

We found the enumeration theorem is provable in RCA₀ as well.

Theorem

(RCA₀) A collection of sets X_0, X_1, \ldots, X_k has a unique transversal if and only if there exists an enumeration of the sets $\langle X'_i \rangle_{i \leq k}$ such that for every $0 \leq j \leq k$, $|X'_0 \cup X'_1 \cup \cdots \cup X'_i| = j$.

Results

Hirst also showed that Marshall Hall's theorem was provably equivalent to ACA_0 over RCA_0 .

We found that the enumeration theorem for infinite collections of sets was also equivalent to ACA₀.

Theorem

(RCA₀) The following are equivalent:

- 1 ACA₀
- 2 A collection of sets X_0, X_1, \ldots has a unique transversal if and only if there exists an enumeration of the sets $\langle X'_i \rangle_{i \ge 0}$ such that for every $0 \le j$, $|X'_0 \cup X'_1 \cup \cdots \cup X'_j| = j$.

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

To that end, let $f : \mathbb{N} \to \mathbb{N}$ be an injection and construct the following sets:

- ▶ $X_i = \{(0, i)\}$ and $Y_i = \{(i, 0)\}$ for every $i \in \mathbb{N}$ and,
- ▶ if f(m) = n then $(m, 0) \in X_n$, that is, $X_n = \{(m, 0), (0, n)\}$.

This collection obviously has a *unique transversal* consisting of (0, i) from each X_i and (i, 0) from each Y_i .

These coordinate pairs are encoded as natural numbers via the pairing map: $(i, j) = (i + j)^2 + i$.

We may apply statement (2) to obtain our special enumeration of collection of X_i and Y_i .

We may apply statement (2) to obtain our special enumeration of collection of X_i and Y_i .

Suppose f(j) = k. Then $X_k = \{(j, 0), (0, k)\}$.

Note that $Y_j = \{(j, 0)\}$ so Y_j must appear in the enumeration before X_k .

We may apply statement (2) to obtain our special enumeration of collection of X_i and Y_i .

Suppose f(j) = k. Then $X_k = \{(j, 0), (0, k)\}$.

Note that $Y_j = \{(j, 0)\}$ so Y_j must appear in the enumeration before X_k .

Well, this implies *k* is in the range of *f* if and only if some set Y_j appears before X_k in the enumeration and f(j) = k.

We need only check finitely many values of f to see if k is in the range, hence, recursive comprehension proves the existence of the range of f.

An Open Question

To prove the enumeration theorem for infinite marriage problems we employed the following lemma.

Lemma

Suppose a collection of sets $C = X_0, X_1, ...$ has a unique transversal. Then for any set X_i there is a finite collection of sets S such that $X_i \in S \subset C$ and

$$|S| = \left| \bigcup_{X_j \in S} X_j \right|.$$

The exact strength of this statement is still unknown.

References

- Jeffry L. Hirst, *Marriage theorems and reverse mathematics*, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181–196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
- [2] Jeffry L. Hirst and Noah A. Hughes, *Reverse mathematics and marriage problems with unique solutions*. Submitted.
- Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007 MR2517689.

Questions?

Thank You.