Transversal Theory and Reverse Mathematics

Noah A. Hughes

hughesna@appstate.edu
Appalachian State University Boone, NC

Thursday, April 3, 2014

National Conference on Undergraduate Research
University of Kentucky

Transversals

Transversals

\section*{| | 1 | 7 | 9 |
| :--- | :--- | :--- | :--- |
| 0 | 4 | 5 | |
| | | | |}

\[

\]

Transversals

\section*{| | 1 | 7 | 9 |
| :--- | :--- | :--- | :--- |
| 0 | 4 | 5 | |}

$$
\begin{array}{|l|lll|}
\hline & \boxed{2} & \boxed{12} & \boxed{5} \\
1 & \boxed{7} & \boxed{19} & \boxed{20} \\
& & \boxed{12} & \\
\hline
\end{array}
$$

Transversals

\section*{| | 1 | 7 | 9 |
| :--- | :--- | :--- | :--- |
| 0 | 4 | 5 | |}

Transversals

$$
\begin{array}{cc}
X_{0}=\{1,7,9,4,5\} & X_{1}=\{2,12,5,7,19,20,12\} \\
X_{2}=\{2,13\} & X_{3}=\{0\} \\
X_{4}=\{7,9\} & X_{5}=\{0,1,2,5,3,4,8,7,9\}
\end{array}
$$

Transversals

$$
\begin{array}{cc}
X_{0}=\{1,7,9,4,5\} & X_{1}=\{2,12,5,7,19,20,12\} \\
X_{2}=\{2,13\} & X_{3}=\{0\} \\
X_{4}=\{7,9\} & X_{5}=\{0,1,2,5,3,4,8,7,9\}
\end{array}
$$

Given a collection of sets $X_{0}, X_{1}, \ldots, X_{k}$, a transversal is a set T that contains exactly one distinct element from each set in the collection.

Transversals

$$
\begin{array}{cc}
X_{0}=\{1,7,9,4,5\} & X_{1}=\{2,12,5,7,19,20,12\} \\
X_{2}=\{2,13\} & X_{3}=\{0\} \\
X_{4}=\{7,9\} & X_{5}=\{0,1,2,5,3,4,8,7,9\}
\end{array}
$$

Given a collection of sets $X_{0}, X_{1}, \ldots, X_{k}$, a transversal is a set T that contains exactly one distinct element from each set in the collection.

$$
T=\{1,12,2,0,7,3\}
$$

Transversals

$$
\begin{array}{cc}
X_{0}=\{1,7,9,4,5\} & X_{1}=\{2,12,5,7,19,20,12\} \\
X_{2}=\{2,13\} & X_{3}=\{0\} \\
X_{4}=\{7,9\} & X_{5}=\{0,1,2,5,3,4,8,7,9\}
\end{array}
$$

Given a collection of sets $X_{0}, X_{1}, \ldots, X_{k}$, a transversal is a set T that contains exactly one distinct element from each set in the collection.

$$
T=\{4,19,13,0,9,8\}
$$

Previous Results for Transversals

Philip Hall and Marshal Hall Jr. (no relation) pioneered transversal theory.

Theorem
(Philip Hall's Theorem) A collection of sets $X_{0}, X_{1}, \ldots, X_{k}$ has a transversal if and only if the union of any m sets has cardinality greater than or equal to m.

Marshall Hall Jr. extended Philip Hall's work to the infinite case.
Theorem
(Marshall Hall's Theorem) A collection of sets X_{0}, X_{1}, \ldots has a transversal if and only if the union of any m sets has cardinality greater than or equal to m.

Unique Solutions

What are the necessary and sufficient conditions for a collection of sets to have a unique transversal?
In the finite case, we found the following necessary and sufficient condition.

Theorem
(RCA_{0}) A collection of sets $X_{0}, X_{1}, \ldots, X_{k}$ has a unique transversal if and only if there exists an enumeration of the sets $\left\langle X_{i}^{\prime}\right\rangle_{i \leqslant k}$ such that for every $0 \leqslant j \leqslant k,\left|X_{0}^{\prime} \cup X_{1}^{\prime} \cup \cdots \cup X_{j}^{\prime}\right|=j$.

Unique Solutions

What are the necessary and sufficient conditions for a collection of sets to have a unique transversal?
In the finite case, we found the following necessary and sufficient condition.
Theorem
(RCA_{0}) A collection of sets $X_{0}, X_{1}, \ldots, X_{k}$ has a unique transversal if and only if there exists an enumeration of the sets $\left\langle X_{i}^{\prime}\right\rangle_{i \leqslant k}$ such that for every $0 \leqslant j \leqslant k,\left|X_{0}^{\prime} \cup X_{1}^{\prime} \cup \cdots \cup X_{j}^{\prime}\right|=j$.

Example:

$$
\begin{aligned}
& X_{0}=\{0\} \\
& X_{1}=\{2,3\} \Longrightarrow \\
& X_{2}=\{2\}
\end{aligned} \quad X_{0}=\{0\} \quad X_{0}=\{2,3\} \quad X_{0}^{\prime} \begin{aligned}
& X_{1}=X_{2}^{\prime} \\
& X_{2}=\{2\}
\end{aligned} \begin{aligned}
& X_{2}=X_{1}^{\prime}
\end{aligned}
$$

Reverse Mathematics

Reverse mathematics is the subfield of mathematical logic dedicated to classifying the logical strength of mathematical theorems.

This is done by proving theorems equivalent to a hierarchy of axioms over a weak base axiom system.

$$
\mathrm{RCA}_{0} \quad \mathrm{WKL}_{0} \quad \mathrm{ACA}_{0} \quad \mathrm{ATR}_{0} \quad \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

RCA_{0} proves the intermediate value theorem and the uncountability of \mathbb{R}.
RCA_{0} does not prove the existence of Riemann integrals.

Equivalences

Theorem
The following are provable in RCA_{0}.
(i) $\mathrm{WKL}_{0} \Longleftrightarrow$ For every continuous function $f(x)$ on a closed bounded interval $a \leqslant x \leqslant b$, the Riemann integral $\int_{a}^{b} f(x) d x$ exists and is finite. (Simpson)
(ii) $\mathrm{ACA}_{0} \Longleftrightarrow$ For all one-to-one functions $f: \mathbb{N} \rightarrow \mathbb{N}$ there exists a set $X \subseteq \mathbb{N}$ such that $\operatorname{Ran}(f)=X$. (Simpson)
(iii) $\mathrm{ATR}_{0} \Longleftrightarrow$ Any two well orderings are comparable. (Friedman)
(iv) $\Pi_{1}^{1}-\mathrm{CA}_{0} \Longleftrightarrow$ The Cantor/Bendixson theorem for $\mathbb{N}^{\mathbb{N}}$: Every closed set in $\mathbb{N}^{\mathbb{N}}$ is the union of a perfect closed set and a countable set. (Simpson)

Results

Jeff Hirst proved that Philip Hall's theorem is provable in RCA ${ }_{0}$.
Theorem
$\left(\mathrm{RCA}_{0}\right) A$ collection of sets $X_{0}, X_{1}, \ldots, X_{k}$ has a transversal if and only if the union of any m sets has cardinality greater than or equal to m.
We found the enumeration theorem is provable in RCA_{0} as well.
Theorem
$\left(\mathrm{RCA}_{0}\right)$ A collection of sets $X_{0}, X_{1}, \ldots, X_{k}$ has a unique
transversal if and only if there exists an enumeration of the sets
$\left\langle X_{i}^{\prime}\right\rangle_{i \leqslant k}$ such that for every $0 \leqslant j \leqslant k,\left|X_{0}^{\prime} \cup X_{1}^{\prime} \cup \cdots \cup X_{j}^{\prime}\right|=j$.

Results

Hirst also showed that Marshall Hall's theorem was provably equivalent to $A C A_{0}$ over $R C A_{0}$.

We found that the enumeration theorem for infinite collections of sets was also equivalent to ACA_{0}.

Theorem

$\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
$1 \mathrm{ACA}_{0}$
2 A collection of sets X_{0}, X_{1}, \ldots has a unique transversal if and only if there exists an enumeration of the sets $\left\langle X_{i}^{\prime}\right\rangle_{i \geqslant 0}$ such that for every $0 \leqslant j,\left|X_{0}^{\prime} \cup X_{1}^{\prime} \cup \cdots \cup X_{j}^{\prime}\right|=j$.

Sketch of the reversal

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

Sketch of the reversal

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

To that end, let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an injection and construct the following sets:

- $X_{i}=\{(0, i)\}$ and $Y_{i}=\{(i, 0)\}$ for every $i \in \mathbb{N}$ and,
- if $f(m)=n$ then $(m, 0) \in X_{n}$, that is, $X_{n}=\{(m, 0),(0, n)\}$.

This collection obviously has a unique transversal consisting of $(0, i)$ from each X_{i} and $(i, 0)$ from each Y_{i}.

These coordinate pairs are encoded as natural numbers via the pairing map: $(i, j)=(i+j)^{2}+i$.

Sketch of the reversal

We may apply statement (2) to obtain our special enumeration of collection of X_{i} and Y_{i}.

Sketch of the reversal

We may apply statement (2) to obtain our special enumeration of collection of X_{i} and Y_{i}.

Suppose $f(j)=k$. Then $X_{k}=\{(j, 0),(0, k)\}$.

Note that $Y_{j}=\{(j, 0)\}$ so Y_{j} must appear in the enumeration before X_{k}.

Sketch of the reversal

We may apply statement (2) to obtain our special enumeration of collection of X_{i} and Y_{i}.

Suppose $f(j)=k$. Then $X_{k}=\{(j, 0),(0, k)\}$.

Note that $Y_{j}=\{(j, 0)\}$ so Y_{j} must appear in the enumeration before X_{k}.

Well, this implies k is in the range of f if and only if some set Y_{j} appears before X_{k} in the enumeration and $f(j)=k$.

We need only check finitely many values of f to see if k is in the range, hence, recursive comprehension proves the existence of the range of f.

An Open Question

To prove the enumeration theorem for infinite marriage problems we employed the following lemma.

Lemma
Suppose a collection of sets $C=X_{0}, X_{1}, \ldots$ has a unique transversal. Then for any set X_{i} there is a finite collection of sets S such that $X_{i} \in S \subset C$ and

$$
|S|=\left|\bigcup_{X_{j} \in S} X_{j}\right|
$$

The exact strength of this statement is still unknown.

References

[1] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer.
Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
[2] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions. Submitted.
[3] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007 MR2517689.

Questions?

Thank You.

