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Preliminaries
An axiom system is a set of mathematical statements we take
as true. We then use the axioms to deduce mathematical
theorems.

Example: ZFC is the standard foundation for mathematics.

Example: The Peano axioms are nine statements which define
the natural numbers.

If we can prove a theorem ϕ in an axiom system T then we
write

T ` ϕ.

If ϕ requires an additional axiom A (along with those in T) to be
proven we write

T + A ` ϕ ←→ T ` A⇒ ϕ.
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Preliminaries

We build formulas from the three atomic formula

x = y , x < y , x ∈ X ,

using logical connectives and quantifiers.

Logical Connectives:

→,↔,¬,∧,∨

Quantifiers:
∃x , ∀y ,∃X ,∀Y

Example:
x ∈ X ↔ ∃y (x = 2 · y).



A Question

How do theorems relate in mathematics?

Suppose we have two mathematical theorems ϕ1 and ϕ2 that
we would like to compare.

→ What does it mean to say ϕ1 is “stronger” than ϕ2?

→ Or to say ϕ1 and ϕ2 are “equivalent”?

→ Can we determine if these theorems are even comparable
or are they independent of each other?

→ What if ϕ1 and ϕ2 are from different areas of mathematics?
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A Possible Strategy

Suppose we have a substantially weak axiom system B (the
base theory) that proves ϕ1 but not does not prove ϕ2:

B ` ϕ1 B 6` ϕ2.

If we find an additional axiom A1 and show that

B+ A1 ` ϕ2,

then we may conclude ϕ2 is logically stronger than ϕ1.

This is a rough measure of logical strength. A1 may be wildly
powerful and give us little insight into the difference in ϕ1 and
ϕ2
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“Reversing” mathematics for a better measure

Because B+ A1 ` ϕ2 we already know

B ` A1 ⇒ ϕ2.

Suppose we can show B+ϕ2 ` A1, that is,

B ` ϕ2 ⇒ A1.

This is called reversing the theorem ϕ2 to the axiom A1.

We can now conclude that A1 and ϕ2 are provably equivalent
over the base theory B, i.e.

B ` A1 ⇐⇒ ϕ2.
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Extending this classification

Let’s consider a third theorem ϕ3.

Suppose after some analysis we find another axiom A2 differing
from A1 such that

B ` A2 ⇐⇒ ϕ3.

What can we conclude about the relationships between our
three theorems ϕ1,ϕ2 and ϕ3?

To determine the relationship between ϕ2 and ϕ3 we need to
know how A1 and A2 compare.
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Is this a good strategy?

Possible complications:
• It may be extremely difficult to determine the relationship

between two axioms.

• The theorems of mathematics are extremely diverse. As
we consider more theorems we may need more and more
axioms to determine their logical strength.

• Each of these axioms may only classify a small number of
theorems.

In short, this could become a real mess.
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It is! (Surprisingly)

It turns out that with the specific base theory RCA0 we need
only four additional axioms (A1,A2,A3,A4) to classify an
enormous amount of mathematical theorems.

We call RCA0 and the four axiom systems which are obtained
from appending A1,A2,A3 or A4 to the base theory the big five:

RCA0 WKL0 ACA0 ATR0 Π1
1 − CA0.

Reverse mathematics is the program dedicated to classifying
the logical strength of mathematical theorems via these five
axiom systems.
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Reverse mathematics

RCA0 WKL0 ACA0 ATR0 Π1
1 − CA0

Each is a weak subsystem of second order arithmetic.

The strength of each system is measured by the amount of set
comprehension available.

Example: Take our three theorems ϕ1,ϕ2 and ϕ3. If we show

RCA0 ` ϕ1

RCA0 `WKL0 ⇐⇒ ϕ2

RCA0 ` ACA0 ⇐⇒ ϕ3,

we know the theorems compare in terms of logical strength.



Second Order Arithmetic
Denoted Z2.

Language:
Number variables: x , y , z Set variables: X , Y , Z

basic arithmetic axioms

n + 1 6= 0
m + 1 = n + 1→ m = n
m + 0 = m
m + (n + 1) = (m + n) + 1
m · 0 = 0
m · (n + 1) = (m · n) + m
¬m < 0
m < n + 1↔ (m < n ∨ m = n)



Second Order Arithmetic
Denoted Z2.

Language:
Number variables: x , y , z Set variables: X , Y , Z

basic arithmetic axioms
(0, 1, +, ×, =, and < behave as usual.)

The second order induction scheme
(ψ(0)∧ ∀n (ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) is any formula in Z2.

Set comprehension

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any formula of Z2 in which X does not occur
freely.



Second Order Arithmetic
Denoted Z2.

Language:
Number variables: x , y , z Set variables: X , Y , Z

basic arithmetic axioms
(0, 1, +, ×, =, and < behave as usual.)

The second order induction scheme
(ψ(0)∧ ∀n (ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) is any formula in Z2.

Set comprehension

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any formula of Z2 in which X does not occur
freely.



Second Order Arithmetic
Denoted Z2.

Language:
Number variables: x , y , z Set variables: X , Y , Z

basic arithmetic axioms
(0, 1, +, ×, =, and < behave as usual.)

The second order induction scheme
(ψ(0)∧ ∀n (ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) is any formula in Z2.

Set comprehension

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any formula of Z2 in which X does not occur
freely.



Recursive Comprehension and RCA0

RCA0 is the subsystem of Z2 whose axioms are:

basic arithmetic axioms

Restricted induction
(ψ(0)∧ ∀n (ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) has (at most) one number quantifier.

Recursive set comprehension
Recursive or computable sets exist.



Coding

In Z2 we can only speak of natural numbers and sets of natural
numbers but we can encode a surprising amount of
mathematics using only these tools.

The pairing map:
(i , j) = (i + j)2 + i .

This encodes pairs as a single natural number:

(2,3) = (2 + 3)2 + 2 = 27 (0,17) = (0 + 17)2 + 0 = 172

We can use sets of pairs to describe a function or a countable
sequence.

Encoding a triple:
(2,3,4) = ((2,3),4) = (27,4) = (27 + 4)2 + 27
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Coding
Z2 is remarkably expressive.

Within RCA0 we may construct the number system of the
integers Z.

Using the pairing map, we identify the (code for the) pair (m,n)
with the integer m − n.

To define arithmetic on Z we make several definitions for “Z
arithmetic” on these pairs.

(m,n) +Z (p,q) = (m + p,n + q)

(m,n) −Z (p,q) = (m + q,n + p)

(m,n) ·Z (p,q) = (m · p + n · q,m · q + n · p)

(m,n) <Z (p,q) ↔ m + q < n + p

(m,n) =Z (p,q) ↔ m + q = n + p
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Coding

We can encode much more within RCA0, including:

• The rational numbers.

• Real numbers.

• Countable abelian groups and vector spaces.

• Continuous real-valued functions.

• Complete separable metric spaces.



How strong is RCA0?

Theorem
The following are provable in RCA0.

(i) The system Q,+,−, ·,0,1,< is an ordered field. (Simpson)

(ii) The uncountability of R. (Simpson)

(iii) The intermediate value theorem on continuous real-valued
functions. If f (x) is a continuous real-valued function on
the unit interval 0 6 x 6 1 and f (0) < 0 < f (1), then there
exists c such that 0 < c < 1 and f (c) = 0. (Simpson)

(iv) Basics of real linear algebra, including Gaussian
Elimination. (Simpson)



How strong is RCA0?

Theorem
The following are not provable in RCA0.

(i) The maximum principle: Every continuous real-valued
function on [0,1] attains a supremum. (Simpson)

(ii) For every continuous function f (x) on a closed bounded

interval a 6 x 6 b, the Riemann integral
∫b

a
f (x)dx exists

and is finite. (Simpson)

So we see RCA0 does not prove everything. This is desirable.



Weak König’s Lemma and WKL0
The next subsystem of Z2 is obtained by appending weak
König’s lemma to RCA0.

Weak König’s lemma states that:

If T is an infinite binary tree, then T contains an infinite path.

So weak König’s lemma
basically says:

“Big, skinny trees are tall.”

RCA0 6` weak König’s lemma
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How strong is WKL0?
Theorem
One can prove the following statements equivalent to WKL0
over RCA0.

(i) The maximum principle: Every continuous real-valued
function on [0,1] attains a supremum. (Simpson)

(ii) Every continuous real-valued function on [0,1] is bounded.
(Simpson)

(iii) For every continuous function f (x) on a closed bounded

interval a 6 x 6 b, the Riemann integral
∫b

a
f (x)dx exists

and is finite. (Simpson)

(iv) Every countable field has a unique algebraic closure.
(Friedman, Simpson, and Smith)

(v) Peano’s existence theorem for solutions to ODEs.
(Simpson)



Arithmetical Comprehension and ACA0

ACA0 is RCA0 plus comprehension for arithmetically definable
sets.

The arithmetical comprehension scheme:

For any formula θ(n) with only number quantifiers,
the set {n ∈ N | θ(n)}.

Note: WKL0 6` ACA0 but ACA0 `WKL0.



How strong is ACA0?

Theorem
One can prove the following statements equivalent to ACA0
over RCA0.

(i) Cauchy sequences converge. (Simpson)

(ii) The Bolzano/Weierstraß theorem: Every bounded
sequence of real numbers contains a convergent
subsequence. (Friedman)

(iii) The Ascoli lemma. (Simpson)

(iv) Ramsey’s theorem for triples. (Simpson)



Arithmetical Transfinite Recursion and ATR0

ATR0 consists of RCA0 plus axioms which allow for iteration of
arithmetical comprehension along any well ordering. This
allows transfinite constructions.

This system is vastly stronger than ACA0.

Theorem
One can prove the following statements equivalent to ATR0
over RCA0.

(i) Any two well orderings are comparable. (Friedman)

(ii) Every countable reduced Abelian p-group has an Ulm
resolution. (Friedman, Simpson, and Smith)

(iii) Sherman’s Inequality: If α,β and γ are countable well
orderings, then (α+ β)γ 6 αγ+ βγ. (Hirst)
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Π1
1 Comprehension and Π1

1 − CA0

The system Π1
1 − CA0 consists of RCA0 plus comprehension for

Π1
1 definable sets. That is, we can assert the existence of the

set
{n ∈ N | θ(n)}

where θ is a Π1
1 formula, meaning θ has one universal set

quantifier (∀X ) and no other set quantifiers.

Theorem
The following are provably equivalent to Π1

1 − CA0 over RCA0.
(i) The Cantor/Bendixson theorem for NN: Every closed set in

NN is the union of a perfect closed set and a countable set.
(Simpson)

(ii) Every countable Abelian group is the direct sum of a
divisible group and a reduced group. (Friedman, Simpson,
and Smith)



Consequences of Reverse Math

• We can formalize many of the theorems in mathematics as
one of only five statements.

• This makes the exceptions that much more interesting.

• Reverse math over stronger systems, e.g., ZFC as the
base theory.
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Some Notation

A marriage problem M consists of three sets B,G and R.

B is the set of boys,

G is the set of girls, and

R is the relation between the boys and girls.

R ⊂ B ×G where (b,g) ∈ R means “b knows g”.

G(b) is convenient shorthand for the set of girls b knows, i.e.

G(b) = {g ∈ G | (b,g) ∈ R}.

G(b) is not a function.
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Some More Notation

A solution to M = (B,G,R) is an injection

f : B → G

such that (b, f (b)) ∈ R for every b ∈ B.



Some More Notation
A solution to M = (B,G,R) is an injection

f : B → G

such that (b, f (b)) ∈ R for every b ∈ B.

M is a:

finite marriage problem if |B| is finite.

infinite marriage problem if |B| is not finite.

bounded marriage problem if there is a function h : B → G
so that for each b ∈ B, G(b) ⊆ {0,1, . . . ,h(b)}.



Previous Work

Jeff Hirst showed the following theorem of Philip Hall is
provable within RCA0.

Theorem
(RCA0) If M = (B,G,R) is a finite marriage problem such that
|G(B0)| > |B0| for every B0 ⊂ B, then M has a solution.

Marshall Hall Jr. extended Philip Hall’s work to the infinite case.

Theorem
If M = (B,G,R) is an infinite marriage problem where each boy
knows only finitely many girls and |G(B0)| > |B0| for every
B0 ⊂ B, then M has a solution.



Previous Work

Hirst proved the following equivalence results.

Theorem
(RCA0) The following are equivalent:
1 ACA0

2 If M = (B,G,R) is an infinite marriage problem where each
boy knows only finitely many girls and |G(B0)| > |B0| for every
B0 ⊂ B, then M has a solution.

Theorem
(RCA0) The following are equivalent:
1 WKL0

2 If M = (B,G,R) is a bounded marriage problem such that
|G(B0)| > |B0| for every B0 ⊂ B, then M has a solution.



Unique Solutions

What are the necessary and sufficient conditions for a marriage
problem to have a unique solution?



Unique Solutions

What are the necessary and sufficient conditions for a marriage
problem to have a unique solution?

In the finite case, we found the following necessary and
sufficient condition.

Theorem
(RCA0) If M = (B,G,R) is a finite marriage problem with n boys
a unique solution f , then there is an enumeration of the boys
〈bi〉i6n such that for every 1 6 m 6 n, |G({b1,b2, . . . ,bm})| = m.
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Sketch of the proof

Lemma
(RCA0) If M = (B,G,R) is a finite marriage problem with a
unique solution f , then some boy knows exactly one girl.



Sketch of the proof
Suppose we have M = (B,G,R) as stated above with some
initial enumeration of B. Apply the lemma and let b1 be the first
boy such that |G(b1)| = 1.

Define M2 = (B−{b1},G−G(b1),R2). Because M has a unique
solution, M2 has a unique solution, namely the restriction of f to
the sets of M2. Apply the lemma once more and let b2 be the
first boy in B−{b1} such that |GM2(b2)| = 1.

Continuing this process inductively yields the j th boy in our
desired enumeration from
Mj = (B−{b1,b2, . . . ,bj−1},G−G(b1,b2, . . . ,bj−1),Rj).

After the nth iteration we have (b1,b2, . . . ,bn) where for every
1 6 m 6 n, |G({b1,b2, . . . ,bm})| = m.



Infinite Marriage Problems

The statement regarding finite marriage problems with unique
solutions can be generalized to the infinite case. Paralleling the
previous work we see:

Theorem
(RCA0) The following are equivalent:
1 ACA0

2 If M = (B,G,R) is an infinite marriage problem where each
boy knows only finitely many girls and has a unique solution
f , then there is an enumeration of the boys 〈bi〉i>1 such that
for every n > 1, |G({b1,b2, . . . ,bn})| = n.



Sketch of the reversal

We assume statement (2) in order to prove statement (1). By
Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the
existence of the range of an arbitrary injection.

To that end, let f : N→ N be an injection and construct
M = (B,G,R) as follows:

I B = {cn | n ∈ N} ∪ {dn | n ∈ N},
I G = {gn | n ∈ N} ∪ {rn | n ∈ N},
I for every i , (ci ,gi) ∈ R and (di , ri) ∈ R, and
I if f (m) = n then (cn, rm) ∈ R.

Let h : B → G such that h(di) = ri and h(ci) = gi for each i ∈ N.

h is injective and a unique solution to M.
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h is injective and a unique solution to M.



Sketch of the reversal

Apply the enumeration theorem to obtain 〈bi〉i>1 where for
every n > 1 |G(b1, . . . ,bn)| = n.

Suppose f (j) = k . Then (ck , rj) ∈ R and G(ck ) = {gk , rj }.

Note G(dj) = {rj }. So dj must appear before ck in the
enumeration of B.

Well, this implies that k is in the range of f if and only if some
boy dj appears before ck in the enumeration and f (j) = k .

We need only check finitely many values of f to see if k is in the
range, hence, recursive comprehension proves the existence of
the range of f .
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Bounded Marriage Problems

In the bounded case, the result, as expected, paralleled the
previous work.

Theorem
(RCA0) The following are equivalent:
1 WKL0

2 If M = (B,G,R) is a bounded marriage problem with a
unique solution f , then there is an enumeration of the boys
〈bi〉i>1 such that for every n > 1, |G({b1,b2, . . . ,bn})| = n.



An Open Question

To prove the enumeration theorem for infinite marriage
problems we employed the following lemma.

Lemma
Suppose M = (B,G,R) is a marriage problem with a unique
solution, then for any b ∈ B there is a finite set F such that
b ∈ F ⊂ B and |G(F )| = |F |.

The exact strength of this statement is still unknown.



References

[1] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and
computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer.
Math. Soc., Providence, RI, 1990, pp. 181–196. DOI
10.1090/conm/106/1057822. MR1057822 (91k:03141)

[2] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage
problems with unique solutions. Submitted.

[3] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed.,
Perspectives in Logic, Cambridge University Press, Cambridge, 2009.
DOI 10.1017/CBO9780511581007 MR2517689.

http://dx.doi.org/10.1017/CBO9780511581007
http://www.ams.org/mathscinet/search/publdoc.html?pg1=MR&s1=2517689


Questions?



Thank You.


