An Introduction to Reverse Mathematics

Noah A. Hughes Appalachian State University Boone, NC

March 28, 2014

Appalachian State University Mathematical Sciences Colloquium Series

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

- Preliminary Definitions
- Motivations
- Reverse mathematics
- Constructing the big five subsystems
- Original results regarding *marriage theorems*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Preliminaries

An **axiom system** is a set of mathematical statements we take as true. We then use the *axioms* to deduce mathematical theorems.

Example: ZFC is the standard foundation for mathematics.

<u>Example:</u> The *Peano axioms* are nine statements which define the natural numbers.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Preliminaries

An **axiom system** is a set of mathematical statements we take as true. We then use the *axioms* to deduce mathematical theorems.

Example: ZFC is the standard foundation for mathematics.

<u>Example:</u> The *Peano axioms* are nine statements which define the natural numbers.

If we can prove a theorem ϕ in an axiom system $\mathfrak T$ then we write

 $\mathfrak{T} \vdash \varphi$.

If ϕ requires an additional axiom A (along with those in $\mathfrak{T})$ to be proven we write

$$\mathfrak{T} + \mathbf{A} \vdash \varphi \qquad \longleftrightarrow \qquad \mathfrak{T} \vdash \mathbf{A} \Rightarrow \varphi.$$

(ロ) (同) (三) (三) (三) (○) (○)

Preliminaries

We build formulas from the three atomic formula

x = y, x < y, $x \in X$,

using logical connectives and quantifiers.

Logical Connectives:

ightarrow , ightarrow , ightarrow , ightarrow

Quantifiers:

 $\exists x$, $\forall y$, $\exists X$, $\forall Y$

Example:

$$x \in X \leftrightarrow \exists y (x = 2 \cdot y).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A Question

How do theorems relate in mathematics?

A Question

How do theorems relate in mathematics?

Suppose we have two mathematical theorems ϕ_1 and ϕ_2 that we would like to compare.

- \rightarrow What does it mean to say ϕ_1 is "stronger" than ϕ_2 ?
- \rightarrow Or to say ϕ_1 and ϕ_2 are "equivalent"?
- → Can we determine if these theorems are even *comparable* or are they independent of each other?
- \rightarrow What if ϕ_1 and ϕ_2 are from different areas of mathematics?

(ロ) (同) (三) (三) (三) (○) (○)

A Possible Strategy

Suppose we have a substantially weak axiom system \mathfrak{B} (the *base theory*) that proves φ_1 but not does not prove φ_2 :

 $\mathfrak{B} \vdash \phi_1 \qquad \mathfrak{B} \not\vdash \phi_2.$

(日)

A Possible Strategy

Suppose we have a substantially weak axiom system \mathfrak{B} (the *base theory*) that proves φ_1 but not does not prove φ_2 :

$$\mathfrak{B} \vdash \varphi_1 \qquad \mathfrak{B} \not\vdash \varphi_2.$$

If we find an additional axiom A_1 and show that

 $\mathfrak{B} + A_1 \vdash \varphi_2$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

then we may conclude φ_2 is logically stronger than φ_1 .

A Possible Strategy

Suppose we have a substantially weak axiom system \mathfrak{B} (the *base theory*) that proves φ_1 but not does not prove φ_2 :

$$\mathfrak{B} \vdash \varphi_1 \qquad \mathfrak{B} \not\vdash \varphi_2.$$

If we find an additional axiom A_1 and show that

 $\mathfrak{B} + A_1 \vdash \varphi_2$,

then we may conclude φ_2 is logically stronger than φ_1 .

This is a rough measure of logical strength. A_1 may be wildly powerful and give us little insight into the difference in φ_1 and φ_2

"Reversing" mathematics for a better measure

Because $\mathfrak{B} + A_1 \vdash \varphi_2$ we already know

 $\mathfrak{B} \vdash A_1 \Rightarrow \varphi_2.$

Suppose we can show $\mathfrak{B} + \varphi_2 \vdash A_1$, that is,

 $\mathfrak{B} \vdash \varphi_2 \Rightarrow A_1.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

"Reversing" mathematics for a better measure

Because $\mathfrak{B} + A_1 \vdash \varphi_2$ we already know

 $\mathfrak{B} \vdash A_1 \Rightarrow \varphi_2.$

Suppose we can show $\mathfrak{B} + \varphi_2 \vdash A_1$, that is,

$$\mathfrak{B} \vdash \varphi_2 \Rightarrow A_1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This is called *reversing* the theorem φ_2 to the axiom A_1 .

"Reversing" mathematics for a better measure

Because $\mathfrak{B} + A_1 \vdash \varphi_2$ we already know

 $\mathfrak{B} \vdash A_1 \Rightarrow \varphi_2.$

Suppose we can show $\mathfrak{B} + \varphi_2 \vdash A_1$, that is,

$$\mathfrak{B} \vdash \varphi_2 \Rightarrow A_1.$$

This is called *reversing* the theorem φ_2 to the axiom A_1 .

We can now conclude that A_1 and φ_2 are *provably equivalent* over the base theory \mathfrak{B} , *i.e.*

$$\mathfrak{B} \vdash A_1 \iff \varphi_2.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extending this classification

Let's consider a third theorem φ_3 .

Suppose after some analysis we find another axiom A_2 differing from A_1 such that

$$\mathfrak{B} \vdash A_2 \iff \varphi_3.$$

What can we conclude about the relationships between our three theorems ϕ_1 , ϕ_2 and ϕ_3 ?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extending this classification

Let's consider a third theorem φ_3 .

Suppose after some analysis we find another axiom A_2 differing from A_1 such that

$$\mathfrak{B} \vdash A_2 \iff \varphi_3.$$

What can we conclude about the relationships between our three theorems φ_1 , φ_2 and φ_3 ?

To determine the relationship between φ_2 and φ_3 we need to know how A_1 and A_2 compare.

Is this a good strategy?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Is this a good strategy?

Possible complications:

- It may be extremely difficult to determine the relationship between two axioms.
- The theorems of mathematics are extremely diverse. As we consider more theorems we may need more and more axioms to determine their logical strength.
- Each of these axioms may only classify a small number of theorems.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Is this a good strategy?

Possible complications:

- It may be extremely difficult to determine the relationship between two axioms.
- The theorems of mathematics are extremely diverse. As we consider more theorems we may need more and more axioms to determine their logical strength.
- Each of these axioms may only classify a small number of theorems.

In short, this could become a real mess.

It is! (Surprisingly)

It turns out that with the specific base theory RCA_0 we need only **four** additional axioms (A_1 , A_2 , A_3 , A_4) to classify an *enormous* amount of mathematical theorems.

We call RCA₀ and the four axiom systems which are obtained from appending A_1 , A_2 , A_3 or A_4 to the base theory the *big five*:

 RCA_0 WKL₀ ACA₀ ATR₀ $\Pi_1^1 - CA_0$.

It is! (Surprisingly)

It turns out that with the specific base theory RCA_0 we need only **four** additional axioms (A_1 , A_2 , A_3 , A_4) to classify an *enormous* amount of mathematical theorems.

We call RCA₀ and the four axiom systems which are obtained from appending A_1 , A_2 , A_3 or A_4 to the base theory the *big five*:

 RCA_0 WKL₀ ACA₀ ATR₀ $\Pi_1^1 - \mathsf{CA}_0$.

Reverse mathematics is the program dedicated to classifying the logical strength of mathematical theorems via these five axiom systems.

Reverse mathematics

RCA₀ WKL₀ ACA₀ ATR₀ $\Pi_1^1 - CA_0$ Each is a *weak* subsystem of *second order arithmetic*.

The strength of each system is measured by the amount of *set comprehension* available.

Example: Take our three theorems φ_1 , φ_2 and φ_3 . If we show

 $\mathsf{RCA}_0 \vdash \varphi_1$

$$\begin{aligned} &\mathsf{RCA}_0 \vdash \mathsf{WKL}_0 \iff \phi_2 \\ &\mathsf{RCA}_0 \vdash \mathsf{ACA}_0 \iff \phi_3, \end{aligned}$$

we know the theorems compare in terms of logical strength.

Denoted Z₂.

Language:

Number variables: x, y, z Set variables: X, Y, Z

basic arithmetic axioms

```
n + 1 \neq 0

m + 1 = n + 1 \rightarrow m = n

m + 0 = m

m + (n + 1) = (m + n) + 1

m \cdot 0 = 0

m \cdot (n + 1) = (m \cdot n) + m

\neg m < 0

m < n + 1 \leftrightarrow (m < n \lor m = n)
```

Denoted Z₂.

Language:

Number variables: x, y, z Set variables: X, Y, Z

basic arithmetic axioms

 $(0, 1, +, \times, =, and < behave as usual.)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Denoted Z₂.

Language:

Number variables: x, y, z Set variables: X, Y, Z

basic arithmetic axioms

(0, 1, +, \times , =, and < behave as usual.)

(ロ) (同) (三) (三) (三) (○) (○)

The second order induction scheme $(\psi(0) \land \forall n (\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n)$ where $\psi(n)$ is any formula in \mathbb{Z}_2 .

Denoted **Z**₂.

Language:

Number variables: x, y, z Set variables: X, Y, Z

basic arithmetic axioms

(0, 1, +, \times , =, and < behave as usual.)

The second order induction scheme $(\psi(0) \land \forall n (\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n)$ where $\psi(n)$ is any formula in \mathbb{Z}_2 .

Set comprehension

$$\exists X \,\forall n \,(n \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any formula of \mathbb{Z}_2 in which X does not occur freely.

Recursive Comprehension and RCA₀

 RCA_0 is the subsystem of Z_2 whose axioms are:

basic arithmetic axioms

Restricted induction $(\psi(0) \land \forall n (\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n)$ where $\psi(n)$ has (at most) one number quantifier.

(ロ) (同) (三) (三) (三) (○) (○)

Recursive set comprehension Recursive or computable sets exist.

In Z_2 we can only speak of natural numbers and sets of natural numbers but we can *encode* a surprising amount of mathematics using only these tools.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In Z_2 we can only speak of natural numbers and sets of natural numbers but we can *encode* a surprising amount of mathematics using only these tools.

The *pairing map*:

$$(i, j) = (i+j)^2 + i.$$

This encodes pairs as a single natural number:

 $(2,3) = (2+3)^2 + 2 = 27$ $(0,17) = (0+17)^2 + 0 = 17^2$

(日) (日) (日) (日) (日) (日) (日)

In Z_2 we can only speak of natural numbers and sets of natural numbers but we can *encode* a surprising amount of mathematics using only these tools.

The *pairing map*:

$$(i, j) = (i+j)^2 + i.$$

This encodes pairs as a single natural number:

 $(2,3) = (2+3)^2 + 2 = 27$ $(0,17) = (0+17)^2 + 0 = 17^2$

We can use sets of pairs to describe a function or a countable sequence.

In Z_2 we can only speak of natural numbers and sets of natural numbers but we can *encode* a surprising amount of mathematics using only these tools.

The *pairing map*:

$$(i, j) = (i+j)^2 + i.$$

This encodes pairs as a single natural number:

 $(2,3) = (2+3)^2 + 2 = 27$ $(0,17) = (0+17)^2 + 0 = 17^2$

We can use sets of pairs to describe a function or a countable sequence.

Encoding a triple: $(2, 3, 4) = ((2, 3), 4) = (27, 4) = (27 + 4)^2 + 27$

 \mathbf{Z}_2 is remarkably expressive.

Within RCA_0 we may construct the number system of the integers \mathbb{Z} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 \mathbf{Z}_2 is remarkably expressive.

Within RCA_0 we may construct the number system of the integers \mathbb{Z} .

Using the pairing map, we identify the (code for the) pair (m, n) with the integer m - n.

To define arithmetic on $\mathbb Z$ we make several definitions for " $\mathbb Z$ arithmetic" on these pairs.

 $(m, n) +_{\mathbb{Z}} (p, q) = (m + p, n + q)$ $(m, n) -_{\mathbb{Z}} (p, q) = (m + q, n + p)$ $(m, n) \cdot_{\mathbb{Z}} (p, q) = (m \cdot p + n \cdot q, m \cdot q + n \cdot p)$ $(m, n) <_{\mathbb{Z}} (p, q) \leftrightarrow m + q < n + p$ $(m, n) =_{\mathbb{Z}} (p, q) \leftrightarrow m + q = n + p$

We can encode much more within RCA₀, including:

- The rational numbers.
- Real numbers.
- Countable abelian groups and vector spaces.

(ロ) (同) (三) (三) (三) (○) (○)

- Continuous real-valued functions.
- Complete separable metric spaces.

How strong is RCA₀?

Theorem

The following are provable in RCA₀.

- (i) The system \mathbb{Q} , +, -, ·, 0, 1, < is an ordered field. (Simpson)
- (ii) The uncountability of \mathbb{R} . (Simpson)
- (iii) The intermediate value theorem on continuous real-valued functions. If f(x) is a continuous real-valued function on the unit interval $0 \le x \le 1$ and f(0) < 0 < f(1), then there exists c such that 0 < c < 1 and f(c) = 0. (Simpson)

(日) (日) (日) (日) (日) (日) (日)

(iv) Basics of real linear algebra, including Gaussian Elimination. (Simpson)

How strong is RCA₀?

Theorem

The following are **not** provable in RCA₀.

- (i) The maximum principle: Every continuous real-valued function on [0, 1] attains a supremum. (Simpson)
- (ii) For every continuous function f(x) on a closed bounded interval $a \le x \le b$, the Riemann integral $\int_a^b f(x) dx$ exists and is finite. (Simpson)

So we see RCA₀ does not prove everything. This is desirable.

Weak König's Lemma and WKL₀

The next subsystem of Z_2 is obtained by appending *weak König's lemma* to RCA₀.

Weak König's lemma states that:

If T is an infinite binary tree, then T contains an infinite path.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Weak König's Lemma and WKL₀

The next subsystem of Z_2 is obtained by appending *weak König's lemma* to RCA₀.

Weak König's lemma states that:

If T is an infinite binary tree, then T contains an infinite path.

So weak König's lemma basically says:

"Big, skinny trees are tall."

 $RCA_0
eq$ weak König's lemma

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

How strong is WKL₀?

Theorem

One can prove the following statements equivalent to WKL_0 over RCA_0 .

- (i) The maximum principle: Every continuous real-valued function on [0, 1] attains a supremum. (Simpson)
- (ii) Every continuous real-valued function on [0, 1] is bounded. (Simpson)
- (iii) For every continuous function f(x) on a closed bounded interval $a \le x \le b$, the Riemann integral $\int_a^b f(x) dx$ exists and is finite. (Simpson)
- (iv) Every countable field has a unique algebraic closure. (Friedman, Simpson, and Smith)
- (v) Peano's existence theorem *for solutions to ODEs.* (Simpson)

Arithmetical Comprehension and ACA₀

ACA₀ is RCA₀ plus comprehension for arithmetically definable sets.

The arithmetical comprehension scheme:

For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Note: WKL₀ \nvdash ACA₀ but ACA₀ \vdash WKL₀.

How strong is ACA₀?

Theorem

One can prove the following statements equivalent to ACA_0 over RCA_0 .

- (i) Cauchy sequences converge. (Simpson)
- (ii) The Bolzano/Weierstraß theorem: Every bounded sequence of real numbers contains a convergent subsequence. (Friedman)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- (iii) The Ascoli lemma. (Simpson)
- (iv) Ramsey's theorem for triples. (Simpson)

Arithmetical Transfinite Recursion and ATR₀

 ATR_0 consists of RCA₀ plus axioms which allow for iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

(ロ) (同) (三) (三) (三) (○) (○)

This system is *vastly* stronger than ACA₀.

Arithmetical Transfinite Recursion and ATR₀

ATR₀ consists of RCA₀ plus axioms which allow for iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

This system is *vastly* stronger than ACA₀.

Theorem

One can prove the following statements equivalent to ATR_0 over RCA_0 .

- (i) Any two well orderings are comparable. (Friedman)
- (ii) Every countable reduced Abelian p-group has an Ulm resolution. (Friedman, Simpson, and Smith)
- (iii) Sherman's Inequality: If α , β and γ are countable well orderings, then $(\alpha + \beta)\gamma \leq \alpha\gamma + \beta\gamma$. (Hirst)

Π^1_1 Comprehension and $\Pi^1_1 - CA_0$

The system $\Pi_1^1 - CA_0$ consists of RCA₀ plus comprehension for Π_1^1 definable sets. That is, we can assert the existence of the set

 $\{n \in \mathbb{N} \mid \theta(n)\}$

where θ is a Π_1^1 formula, meaning θ has one universal set quantifier ($\forall X$) and no other set quantifiers.

Theorem

The following are provably equivalent to $\Pi_1^1 - CA_0$ over RCA_0 .

- (i) The Cantor/Bendixson theorem for N^N: Every closed set in N^N is the union of a perfect closed set and a countable set. (Simpson)
- (ii) Every countable Abelian group is the direct sum of a divisible group and a reduced group. (Friedman, Simpson, and Smith)

Consequences of Reverse Math

- We can formalize many of the theorems in mathematics as one of only *five* statements.
- This makes the exceptions that much more interesting.
- Reverse math over stronger systems, *e.g.*, ZFC as the base theory.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

E のへで

Some Notation

A marriage problem *M* consists of three sets *B*, *G* and *R*.

- B is the set of boys,
- G is the set of girls, and
- *R* is the relation between the boys and girls.

(ロ) (同) (三) (三) (三) (○) (○)

$R \subset B \times G$ where $(b, g) \in R$ means "b knows g".

Some Notation

A marriage problem *M* consists of three sets *B*, *G* and *R*.

- B is the set of boys,
- G is the set of girls, and
- *R* is the relation between the boys and girls.

 $R \subset B \times G$ where $(b, g) \in R$ means "*b* knows *g*".

G(b) is convenient shorthand for the set of girls b knows, *i.e.*

$$G(b) = \{g \in G \mid (b,g) \in R\}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

G(b) is *not* a function.

Some More Notation

A solution to M = (B, G, R) is an injection

 $f: B \to G$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

such that $(b, f(b)) \in R$ for every $b \in B$.

Some More Notation

A solution to M = (B, G, R) is an injection

 $f: B \to G$

such that $(b, f(b)) \in R$ for every $b \in B$.

M is a:

finite marriage problem if |B| is finite.

infinite marriage problem if |B| is not finite.

bounded marriage problem if there is a function $h : B \to G$ so that for each $b \in B$, $G(b) \subseteq \{0, 1, ..., h(b)\}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Previous Work

Jeff Hirst showed the following theorem of Philip Hall is provable within RCA₀.

Theorem

(RCA₀) If M = (B, G, R) is a finite marriage problem such that $|G(B_0)| \ge |B_0|$ for every $B_0 \subset B$, then M has a solution.

Marshall Hall Jr. extended Philip Hall's work to the infinite case.

Theorem

If M = (B, G, R) is an infinite marriage problem where each boy knows only finitely many girls and $|G(B_0)| \ge |B_0|$ for every $B_0 \subset B$, then M has a solution.

Previous Work

Hirst proved the following equivalence results.

Theorem

(RCA₀) The following are equivalent:

- 1 ACA₀
- 2 If M = (B, G, R) is an infinite marriage problem where each boy knows only finitely many girls and $|G(B_0)| \ge |B_0|$ for every $B_0 \subset B$, then M has a solution.

Theorem (RCA₀) *The following are equivalent:*

- 1 WKL₀
- 2 If M = (B, G, R) is a bounded marriage problem such that $|G(B_0)| \ge |B_0|$ for every $B_0 \subset B$, then M has a solution.

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA₀) If M = (B, G, R) is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \ldots, b_m\})| = m$.

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA₀) If M = (B, G, R) is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \dots, b_m\})| = m$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA₀) If M = (B, G, R) is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \dots, b_m\})| = m$.

(ロ) (同) (三) (三) (三) (○) (○)

What are the necessary and sufficient conditions for a marriage problem to have a *unique* solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA₀) If M = (B, G, R) is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\langle b_i \rangle_{i \leq n}$ such that for every $1 \leq m \leq n$, $|G(\{b_1, b_2, \dots, b_m\})| = m$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Sketch of the proof

Lemma

(RCA₀) If M = (B, G, R) is a finite marriage problem with a unique solution *f*, then some boy knows exactly one girl.

Sketch of the proof

Suppose we have M = (B, G, R) as stated above with some initial enumeration of *B*. Apply the lemma and let b_1 be the first boy such that $|G(b_1)| = 1$.

Define $M_2 = (B - \{b_1\}, G - G(b_1), R_2)$. Because *M* has a unique solution, M_2 has a unique solution, namely the restriction of *f* to the sets of M_2 . Apply the lemma once more and let b_2 be the first boy in $B - \{b_1\}$ such that $|G_{M_2}(b_2)| = 1$.

Continuing this process inductively yields the j^{th} boy in our desired enumeration from

$$M_j = (B - \{b_1, b_2, \dots, b_{j-1}\}, G - G(b_1, b_2, \dots, b_{j-1}), R_j).$$

After the n^{th} iteration we have (b_1, b_2, \dots, b_n) where for every $1 \le m \le n$, $|G(\{b_1, b_2, \dots, b_m\})| = m$.

Infinite Marriage Problems

The statement regarding finite marriage problems with unique solutions can be generalized to the *infinite* case. Paralleling the previous work we see:

Theorem (RCA₀) *The following are equivalent:*

1 ACA₀

2 If M = (B, G, R) is an infinite marriage problem where each boy knows only finitely many girls and has a unique solution *f*, then there is an enumeration of the boys ⟨b_i⟩_{i≥1} such that for every n ≥ 1, |G({b₁, b₂,..., b_n})| = n.

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

(ロ) (同) (三) (三) (三) (○) (○)

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

(ロ) (同) (三) (三) (三) (○) (○)

To that end, let $f : \mathbb{N} \to \mathbb{N}$ be an injection and construct M = (B, G, R) as follows:

$$\bullet \ B = \{c_n \mid n \in \mathbb{N}\} \cup \{d_n \mid n \in \mathbb{N}\},\$$

- $\bullet \ G = \{g_n \mid n \in \mathbb{N}\} \cup \{r_n \mid n \in \mathbb{N}\},\$
- ▶ for every i, $(c_i, g_i) \in R$ and $(d_i, r_i) \in R$, and
- if f(m) = n then $(c_n, r_m) \in R$.

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

To that end, let $f : \mathbb{N} \to \mathbb{N}$ be an injection and construct M = (B, G, R) as follows:

►
$$B = \{c_n \mid n \in \mathbb{N}\} \cup \{d_n \mid n \in \mathbb{N}\},\$$

- ► $G = \{g_n \mid n \in \mathbb{N}\} \cup \{r_n \mid n \in \mathbb{N}\},\$
- ▶ for every i, $(c_i, g_i) \in R$ and $(d_i, r_i) \in R$, and
- if f(m) = n then $(c_n, r_m) \in R$.

Let $h : B \to G$ such that $h(d_i) = r_i$ and $h(c_i) = g_i$ for each $i \in \mathbb{N}$. *h* is injective and a unique solution to *M*.

Apply the enumeration theorem to obtain $\langle b_i \rangle_{i \ge 1}$ where for every $n \ge 1$ $|G(b_1, ..., b_n)| = n$.

Apply the enumeration theorem to obtain $\langle b_i \rangle_{i \ge 1}$ where for every $n \ge 1 |G(b_1, ..., b_n)| = n$.

Suppose f(j) = k. Then $(c_k, r_j) \in R$ and $G(c_k) = \{g_k, r_j\}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note $G(d_j) = \{r_j\}$. So d_j must appear before c_k in the enumeration of B.

Apply the enumeration theorem to obtain $\langle b_i \rangle_{i \ge 1}$ where for every $n \ge 1 |G(b_1, ..., b_n)| = n$.

Suppose f(j) = k. Then $(c_k, r_j) \in R$ and $G(c_k) = \{g_k, r_j\}$.

Note $G(d_j) = \{r_j\}$. So d_j must appear before c_k in the enumeration of B.

Well, this implies that *k* is in the range of *f* if and only if some boy d_j appears before c_k in the enumeration and f(j) = k.

We need only check finitely many values of f to see if k is in the range, hence, recursive comprehension proves the existence of the range of f.

Apply the enumeration theorem to obtain $\langle b_i \rangle_{i \ge 1}$ where for every $n \ge 1 |G(b_1, ..., b_n)| = n$.

Suppose f(j) = k. Then $(c_k, r_j) \in R$ and $G(c_k) = \{g_k, r_j\}$.

Note $G(d_j) = \{r_j\}$. So d_j must appear before c_k in the enumeration of B.

Well, this implies that *k* is in the range of *f* if and only if some boy d_j appears before c_k in the enumeration and f(j) = k.

We need only check finitely many values of f to see if k is in the range, hence, recursive comprehension proves the existence of the range of f.

Bounded Marriage Problems

In the *bounded* case, the result, as expected, paralleled the previous work.

Theorem (RCA₀) *The following are equivalent:*

- 1 WKL₀
- 2 If M = (B, G, R) is a bounded marriage problem with a unique solution f, then there is an enumeration of the boys (b_i)_{i≥1} such that for every n ≥ 1, |G({b₁, b₂,..., b_n})| = n.

To prove the enumeration theorem for infinite marriage problems we employed the following lemma.

Lemma

Suppose M = (B, G, R) is a marriage problem with a unique solution, then for any $b \in B$ there is a finite set F such that $b \in F \subset B$ and |G(F)| = |F|.

(ロ) (同) (三) (三) (三) (○) (○)

The exact strength of this statement is still unknown.
References

- Jeffry L. Hirst, *Marriage theorems and reverse mathematics*, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 181–196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
- [2] Jeffry L. Hirst and Noah A. Hughes, *Reverse mathematics and marriage problems with unique solutions*. Submitted.
- [3] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.
 DOI 10.1017/CBO9780511581007 MR2517689.

(ロ) (同) (三) (三) (三) (○) (○)

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Thank You.