An Introduction to Reverse Mathematics

Noah A. Hughes
Appalachian State University
Boone, NC

March 28, 2014

Appalachian State University Mathematical Sciences Colloquium Series

Outline

- Preliminary Definitions
- Motivations
- Reverse mathematics
- Constructing the big five subsystems
- Original results regarding marriage theorems

Preliminaries

An axiom system is a set of mathematical statements we take as true. We then use the axioms to deduce mathematical theorems.

Example: ZFC is the standard foundation for mathematics.
Example: The Peano axioms are nine statements which define the natural numbers.

Preliminaries

An axiom system is a set of mathematical statements we take as true. We then use the axioms to deduce mathematical theorems.

Example: ZFC is the standard foundation for mathematics.
Example: The Peano axioms are nine statements which define the natural numbers.

If we can prove a theorem φ in an axiom system \mathfrak{T} then we write

$$
\mathfrak{T} \vdash \varphi .
$$

If φ requires an additional axiom A (along with those in \mathfrak{T}) to be proven we write

$$
\mathfrak{T}+A \vdash \varphi \quad \longleftrightarrow \quad \mathfrak{T} \vdash A \Rightarrow \varphi
$$

Preliminaries

We build formulas from the three atomic formula

$$
x=y, x<y, x \in X
$$

using logical connectives and quantifiers.
Logical Connectives:

$$
\rightarrow, \leftrightarrow, \neg, \wedge, \vee
$$

Quantifiers:

$$
\exists x, \forall y, \exists X, \forall Y
$$

Example:

$$
x \in X \leftrightarrow \exists y(x=2 \cdot y)
$$

A Question

How do theorems relate in mathematics?

A Question

How do theorems relate in mathematics?

Suppose we have two mathematical theorems φ_{1} and φ_{2} that we would like to compare.
\rightarrow What does it mean to say φ_{1} is "stronger" than φ_{2} ?
\rightarrow Or to say φ_{1} and φ_{2} are "equivalent"?
\rightarrow Can we determine if these theorems are even comparable or are they independent of each other?
\rightarrow What if φ_{1} and φ_{2} are from different areas of mathematics?

A Possible Strategy

Suppose we have a substantially weak axiom system \mathfrak{B} (the base theory) that proves φ_{1} but not does not prove φ_{2} :

$$
\mathfrak{B} \vdash \varphi_{1} \quad \mathfrak{B} \nvdash \varphi_{2}
$$

A Possible Strategy

Suppose we have a substantially weak axiom system \mathfrak{B} (the base theory) that proves φ_{1} but not does not prove φ_{2} :

$$
\mathfrak{B} \vdash \varphi_{1} \quad \mathfrak{B} \nvdash \varphi_{2}
$$

If we find an additional axiom A_{1} and show that

$$
\mathfrak{B}+A_{1} \vdash \varphi_{2},
$$

then we may conclude φ_{2} is logically stronger than φ_{1}.

A Possible Strategy

Suppose we have a substantially weak axiom system \mathfrak{B} (the base theory) that proves φ_{1} but not does not prove φ_{2} :

$$
\mathfrak{B} \vdash \varphi_{1} \quad \mathfrak{B} \nvdash \varphi_{2}
$$

If we find an additional axiom A_{1} and show that

$$
\mathfrak{B}+A_{1} \vdash \varphi_{2},
$$

then we may conclude φ_{2} is logically stronger than φ_{1}.
This is a rough measure of logical strength. A_{1} may be wildly powerful and give us little insight into the difference in φ_{1} and φ_{2}

"Reversing" mathematics for a better measure

Because $\mathfrak{B}+A_{1} \vdash \varphi_{2}$ we already know

$$
\mathfrak{B} \vdash A_{1} \Rightarrow \varphi_{2} .
$$

Suppose we can show $\mathfrak{B}+\varphi_{2} \vdash A_{1}$, that is,

$$
\mathfrak{B} \vdash \varphi_{2} \Rightarrow A_{1} .
$$

"Reversing" mathematics for a better measure

Because $\mathfrak{B}+A_{1} \vdash \varphi_{2}$ we already know

$$
\mathfrak{B} \vdash A_{1} \Rightarrow \varphi_{2} .
$$

Suppose we can show $\mathfrak{B}+\varphi_{2} \vdash A_{1}$, that is,

$$
\mathfrak{B} \vdash \varphi_{2} \Rightarrow A_{1} .
$$

This is called reversing the theorem φ_{2} to the axiom A_{1}.

"Reversing" mathematics for a better measure

Because $\mathfrak{B}+A_{1} \vdash \varphi_{2}$ we already know

$$
\mathfrak{B} \vdash A_{1} \Rightarrow \varphi_{2} .
$$

Suppose we can show $\mathfrak{B}+\varphi_{2} \vdash A_{1}$, that is,

$$
\mathfrak{B} \vdash \varphi_{2} \Rightarrow A_{1} .
$$

This is called reversing the theorem φ_{2} to the axiom A_{1}.
We can now conclude that A_{1} and φ_{2} are provably equivalent over the base theory \mathfrak{B}, i.e.

$$
\mathfrak{B} \vdash A_{1} \Longleftrightarrow \varphi_{2}
$$

Extending this classification

Let's consider a third theorem φ_{3}.
Suppose after some analysis we find another axiom A_{2} differing from A_{1} such that

$$
\mathfrak{B} \vdash A_{2} \Longleftrightarrow \varphi_{3} .
$$

What can we conclude about the relationships between our three theorems φ_{1}, φ_{2} and φ_{3} ?

Extending this classification

Let's consider a third theorem φ_{3}.
Suppose after some analysis we find another axiom A_{2} differing from A_{1} such that

$$
\mathfrak{B} \vdash A_{2} \Longleftrightarrow \varphi_{3} .
$$

What can we conclude about the relationships between our three theorems φ_{1}, φ_{2} and φ_{3} ?

To determine the relationship between φ_{2} and φ_{3} we need to know how A_{1} and A_{2} compare.

Is this a good strategy?

Is this a good strategy?

Possible complications:

- It may be extremely difficult to determine the relationship between two axioms.
- The theorems of mathematics are extremely diverse. As we consider more theorems we may need more and more axioms to determine their logical strength.
- Each of these axioms may only classify a small number of theorems.

Is this a good strategy?

Possible complications:

- It may be extremely difficult to determine the relationship between two axioms.
- The theorems of mathematics are extremely diverse. As we consider more theorems we may need more and more axioms to determine their logical strength.
- Each of these axioms may only classify a small number of theorems.

In short, this could become a real mess.

It is! (Surprisingly)

It turns out that with the specific base theory RCA_{0} we need only four additional axioms $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ to classify an enormous amount of mathematical theorems.

We call RCA_{0} and the four axiom systems which are obtained from appending A_{1}, A_{2}, A_{3} or A_{4} to the base theory the big five:
$\mathrm{RCA}_{0} \quad \mathrm{WKL}_{0} \quad \mathrm{ACA}_{0} \quad \mathrm{ATR}_{0} \quad \Pi_{1}^{1}-\mathrm{CA}_{0}$.

It is! (Surprisingly)

It turns out that with the specific base theory RCA_{0} we need only four additional axioms $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$ to classify an enormous amount of mathematical theorems.

We call RCA A_{0} and the four axiom systems which are obtained from appending A_{1}, A_{2}, A_{3} or A_{4} to the base theory the big five:

$$
\mathrm{RCA}_{0} \quad \mathrm{WKL}_{0} \quad \mathrm{ACA}_{0} \quad \mathrm{ATR}_{0} \quad \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

Reverse mathematics is the program dedicated to classifying the logical strength of mathematical theorems via these five axiom systems.

Reverse mathematics

$$
\mathrm{RCA}_{0} \quad \mathrm{WKL}_{0} \quad \mathrm{ACA}_{0} \quad \mathrm{ATR}_{0} \quad \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

Each is a weak subsystem of second order arithmetic.

The strength of each system is measured by the amount of set comprehension available.

Example: Take our three theorems φ_{1}, φ_{2} and φ_{3}. If we show

$$
\begin{gathered}
\mathrm{RCA}_{0} \vdash \varphi_{1} \\
\mathrm{RCA}_{0} \vdash \mathrm{WKL}_{0} \Longleftrightarrow \varphi_{2} \\
\mathrm{RCA}_{0} \vdash \mathrm{ACA}_{0} \Longleftrightarrow \varphi_{3},
\end{gathered}
$$

we know the theorems compare in terms of logical strength.

Second Order Arithmetic

Denoted \mathbf{Z}_{2}.

Language:

Number variables: $x, y, z \quad$ Set variables: X, Y, Z basic arithmetic axioms

$$
\begin{aligned}
& n+1 \neq 0 \\
& m+1=n+1 \rightarrow m=n \\
& m+0=m \\
& m+(n+1)=(m+n)+1 \\
& m \cdot 0=0 \\
& m \cdot(n+1)=(m \cdot n)+m \\
& \neg m<0 \\
& m<n+1 \leftrightarrow(m<n \vee m=n)
\end{aligned}
$$

Second Order Arithmetic

Denoted \mathbf{Z}_{2}.

Language:
Number variables: $x, y, z \quad$ Set variables: X, Y, Z
basic arithmetic axioms
($0,1,+, \times,=$, and $<$ behave as usual.)

Second Order Arithmetic

Denoted \mathbf{Z}_{2}.
Language:
Number variables: $x, y, z \quad$ Set variables: X, Y, Z
basic arithmetic axioms
($0,1,+, \times,=$, and $<$ behave as usual.)
The second order induction scheme
$(\psi(0) \wedge \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n)$
where $\psi(n)$ is any formula in \mathbf{Z}_{2}.

Second Order Arithmetic

Denoted \mathbf{Z}_{2}.
Language:
Number variables: $x, y, z \quad$ Set variables: X, Y, Z
basic arithmetic axioms
($0,1,+, \times,=$, and $<$ behave as usual.)
The second order induction scheme

$$
\begin{aligned}
& (\psi(0) \wedge \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n) \\
& \text { where } \psi(n) \text { is any formula in } \mathbf{Z}_{2} .
\end{aligned}
$$

Set comprehension

$$
\exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

where $\varphi(n)$ is any formula of \mathbf{Z}_{2} in which X does not occur freely.

Recursive Comprehension and RCA_{0}

$R C A_{0}$ is the subsystem of \mathbf{Z}_{2} whose axioms are:
basic arithmetic axioms

Restricted induction

$$
\begin{aligned}
& (\psi(0) \wedge \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \psi(n) \\
& \text { where } \psi(n) \text { has (at most) one number quantifier. }
\end{aligned}
$$

Recursive set comprehension
Recursive or computable sets exist.

Coding

In \mathbf{Z}_{2} we can only speak of natural numbers and sets of natural numbers but we can encode a surprising amount of mathematics using only these tools.

Coding

In \mathbf{Z}_{2} we can only speak of natural numbers and sets of natural numbers but we can encode a surprising amount of mathematics using only these tools.

The pairing map:

$$
(i, j)=(i+j)^{2}+i
$$

This encodes pairs as a single natural number:

$$
(2,3)=(2+3)^{2}+2=27 \quad(0,17)=(0+17)^{2}+0=17^{2}
$$

Coding

In \mathbf{Z}_{2} we can only speak of natural numbers and sets of natural numbers but we can encode a surprising amount of mathematics using only these tools.

The pairing map:

$$
(i, j)=(i+j)^{2}+i
$$

This encodes pairs as a single natural number:

$$
(2,3)=(2+3)^{2}+2=27 \quad(0,17)=(0+17)^{2}+0=17^{2}
$$

We can use sets of pairs to describe a function or a countable sequence.

Coding

In \mathbf{Z}_{2} we can only speak of natural numbers and sets of natural numbers but we can encode a surprising amount of mathematics using only these tools.

The pairing map:

$$
(i, j)=(i+j)^{2}+i
$$

This encodes pairs as a single natural number:

$$
(2,3)=(2+3)^{2}+2=27 \quad(0,17)=(0+17)^{2}+0=17^{2}
$$

We can use sets of pairs to describe a function or a countable sequence.

Encoding a triple:
$(2,3,4)=((2,3), 4)=(27,4)=(27+4)^{2}+27$

Coding

\mathbf{Z}_{2} is remarkably expressive.
Within RCA $_{0}$ we may construct the number system of the integers \mathbb{Z}.

Coding

\mathbf{Z}_{2} is remarkably expressive.
Within RCA $_{0}$ we may construct the number system of the integers \mathbb{Z}.

Using the pairing map, we identify the (code for the) pair (m, n) with the integer $m-n$.

To define arithmetic on \mathbb{Z} we make several definitions for " \mathbb{Z} arithmetic" on these pairs.

$$
\begin{aligned}
(m, n)+_{\mathbb{Z}}(p, q) & =(m+p, n+q) \\
(m, n)-_{\mathbb{Z}}(p, q) & =(m+q, n+p) \\
(m, n) \cdot_{\mathbb{Z}}(p, q) & =(m \cdot p+n \cdot q, m \cdot q+n \cdot p) \\
(m, n)<_{\mathbb{Z}}(p, q) & \leftrightarrow m+q<n+p \\
(m, n)=_{\mathbb{Z}}(p, q) & \leftrightarrow m+q=n+p
\end{aligned}
$$

Coding

We can encode much more within RCA_{0}, including:

- The rational numbers.
- Real numbers.
- Countable abelian groups and vector spaces.
- Continuous real-valued functions.
- Complete separable metric spaces.

How strong is RCA_{0} ?

Theorem

The following are provable in RCA_{0}.
(i) The system $\mathbb{Q},+,-, \cdot, 0,1,<$ is an ordered field. (Simpson)
(ii) The uncountability of \mathbb{R}. (Simpson)
(iii) The intermediate value theorem on continuous real-valued functions. If $f(x)$ is a continuous real-valued function on the unit interval $0 \leqslant x \leqslant 1$ and $f(0)<0<f(1)$, then there exists c such that $0<c<1$ and $f(c)=0$. (Simpson)
(iv) Basics of real linear algebra, including Gaussian Elimination. (Simpson)

How strong is RCA_{0} ?

Theorem
The following are not provable in RCA_{0}.
(i) The maximum principle: Every continuous real-valued function on $[0,1]$ attains a supremum. (Simpson)
(ii) For every continuous function $f(x)$ on a closed bounded interval $a \leqslant x \leqslant b$, the Riemann integral $\int_{a}^{b} f(x) d x$ exists and is finite. (Simpson)

So we see $R_{C A}$ does not prove everything. This is desirable.

Weak König's Lemma and $W K L_{0}$

The next subsystem of \mathbf{Z}_{2} is obtained by appending weak König's lemma to RCA_{0}.

Weak König's lemma states that:
If T is an infinite binary tree, then T contains an infinite path.

Weak König's Lemma and WKLo

The next subsystem of \mathbf{Z}_{2} is obtained by appending weak König's lemma to RCA_{0}.

Weak König's lemma states that:
If T is an infinite binary tree, then T contains an infinite path.

So weak König's lemma
basically says:
"Big, skinny trees are tall."

RCA $A_{0} \nvdash$ weak König's lemma

How strong is WKL_{0} ?

Theorem
One can prove the following statements equivalent to WKL_{0} over RCA_{0}.
(i) The maximum principle: Every continuous real-valued function on $[0,1]$ attains a supremum. (Simpson)
(ii) Every continuous real-valued function on $[0,1]$ is bounded. (Simpson)
(iii) For every continuous function $f(x)$ on a closed bounded interval $a \leqslant x \leqslant b$, the Riemann integral $\int_{a}^{b} f(x) d x$ exists and is finite. (Simpson)
(iv) Every countable field has a unique algebraic closure. (Friedman, Simpson, and Smith)
(v) Peano's existence theorem for solutions to ODEs. (Simpson)

Arithmetical Comprehension and ACA_{0}

$A C A_{0}$ is $R C A_{0}$ plus comprehension for arithmetically definable sets.

The arithmetical comprehension scheme:
For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$.

Note: $W_{K L} \nvdash \mathrm{ACA}_{0}$ but $\mathrm{ACA}_{0} \vdash \mathrm{WKL}_{0}$.

How strong is ACA_{0} ?

Theorem
One can prove the following statements equivalent to ACA_{0} over RCA_{0}.
(i) Cauchy sequences converge. (Simpson)
(ii) The Bolzano/Weierstraß theorem: Every bounded sequence of real numbers contains a convergent subsequence. (Friedman)
(iii) The Ascoli lemma. (Simpson)
(iv) Ramsey's theorem for triples. (Simpson)

Arithmetical Transfinite Recursion and ATR R_{0}

ATR $_{0}$ consists of RCA $_{0}$ plus axioms which allow for iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

This system is vastly stronger than $A C A_{0}$.

Arithmetical Transfinite Recursion and ATR R_{0}

ATR R_{0} consists of RCA $_{0}$ plus axioms which allow for iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

This system is vastly stronger than $A C A_{0}$.

Theorem

One can prove the following statements equivalent to ATR $_{0}$ over RCA_{0}.
(i) Any two well orderings are comparable. (Friedman)
(ii) Every countable reduced Abelian p-group has an Ulm resolution. (Friedman, Simpson, and Smith)
(iii) Sherman's Inequality: If α, β and γ are countable well orderings, then $(\alpha+\beta) \gamma \leqslant \alpha \gamma+\beta \gamma$. (Hirst)

Π_{1}^{1} Comprehension and $\Pi_{1}^{1}-\mathrm{CA}{ }_{0}$

The system $\Pi_{1}^{1}-\mathrm{CA}_{0}$ consists of $R C A_{0}$ plus comprehension for Π_{1}^{1} definable sets. That is, we can assert the existence of the set

$$
\{n \in \mathbb{N} \mid \theta(n)\}
$$

where θ is a Π_{1}^{1} formula, meaning θ has one universal set quantifier $(\forall X)$ and no other set quantifiers.
Theorem
The following are provably equivalent to $\Pi_{1}^{1}-\mathrm{CA}_{0}$ over RCA_{0}.
(i) The Cantor/Bendixson theorem for $\mathbb{N}^{\mathbb{N}}$: Every closed set in $\mathbb{N}^{\mathbb{N}}$ is the union of a perfect closed set and a countable set. (Simpson)
(ii) Every countable Abelian group is the direct sum of a divisible group and a reduced group. (Friedman, Simpson, and Smith)

Consequences of Reverse Math

- We can formalize many of the theorems in mathematics as one of only five statements.
- This makes the exceptions that much more interesting.
- Reverse math over stronger systems, e.g., ZFC as the base theory.

Marriage Problems

Marriage Problems

Marriage Problems

Marriage Problems

Marriage Problems

Some Notation

A marriage problem M consists of three sets B, G and R.
B is the set of boys,
G is the set of girls, and
R is the relation between the boys and girls.
$R \subset B \times G$ where $(b, g) \in R$ means " b knows g ".

Some Notation

A marriage problem M consists of three sets B, G and R.
B is the set of boys,
G is the set of girls, and
R is the relation between the boys and girls.
$R \subset B \times G$ where $(b, g) \in R$ means " b knows g ".
$G(b)$ is convenient shorthand for the set of girls b knows, i.e.

$$
G(b)=\{g \in G \mid(b, g) \in R\}
$$

$G(b)$ is not a function.

Some More Notation

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.

Some More Notation

A solution to $M=(B, G, R)$ is an injection

$$
f: B \rightarrow G
$$

such that $(b, f(b)) \in R$ for every $b \in B$.
M is a:
finite marriage problem if $|B|$ is finite.
infinite marriage problem if $|B|$ is not finite.
bounded marriage problem if there is a function $h: B \rightarrow G$ so that for each $b \in B, G(b) \subseteq\{0,1, \ldots, h(b)\}$.

Previous Work

Jeff Hirst showed the following theorem of Philip Hall is provable within RCA_{0}.

Theorem

$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem such that $\left|G\left(B_{0}\right)\right| \geqslant\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Marshall Hall Jr. extended Philip Hall's work to the infinite case.
Theorem
If $M=(B, G, R)$ is an infinite marriage problem where each boy knows only finitely many girls and $\left|G\left(B_{0}\right)\right| \geqslant\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Previous Work

Hirst proved the following equivalence results.
Theorem
$\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
$1 \mathrm{ACA}_{0}$
2 If $M=(B, G, R)$ is an infinite marriage problem where each boy knows only finitely many girls and $\left|G\left(B_{0}\right)\right| \geqslant\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Theorem
(RCA_{0}) The following are equivalent:
$1 \mathrm{WKL}_{0}$
2 If $M=(B, G, R)$ is a bounded marriage problem such that $\left|G\left(B_{0}\right)\right| \geqslant\left|B_{0}\right|$ for every $B_{0} \subset B$, then M has a solution.

Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leqslant n}$ such that for every $1 \leqslant m \leqslant n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA_{0}) If $M=(B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leqslant n}$ such that for every $1 \leqslant m \leqslant n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA_{0}) If $M=(B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leqslant n}$ such that for every $1 \leqslant m \leqslant n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Unique Solutions

What are the necessary and sufficient conditions for a marriage problem to have a unique solution?

In the finite case, we found the following necessary and sufficient condition.

Theorem

(RCA_{0}) If $M=(B, G, R)$ is a finite marriage problem with n boys a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \leqslant n}$ such that for every $1 \leqslant m \leqslant n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Sketch of the proof

Lemma
$\left(\mathrm{RCA}_{0}\right)$ If $M=(B, G, R)$ is a finite marriage problem with a unique solution f, then some boy knows exactly one girl.

Sketch of the proof

Suppose we have $M=(B, G, R)$ as stated above with some initial enumeration of B. Apply the lemma and let b_{1} be the first boy such that $\left|G\left(b_{1}\right)\right|=1$.

Define $M_{2}=\left(B-\left\{b_{1}\right\}, G-G\left(b_{1}\right), R_{2}\right)$. Because M has a unique solution, M_{2} has a unique solution, namely the restriction of f to the sets of M_{2}. Apply the lemma once more and let b_{2} be the first boy in $B-\left\{b_{1}\right\}$ such that $\left|G_{M_{2}}\left(b_{2}\right)\right|=1$.

Continuing this process inductively yields the $j^{\text {th }}$ boy in our desired enumeration from
$M_{j}=\left(B-\left\{b_{1}, b_{2}, \ldots, b_{j-1}\right\}, G-G\left(b_{1}, b_{2}, \ldots, b_{j-1}\right), R_{j}\right)$.
After the $n^{\text {th }}$ iteration we have $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ where for every $1 \leqslant m \leqslant n,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}\right)\right|=m$.

Infinite Marriage Problems

The statement regarding finite marriage problems with unique solutions can be generalized to the infinite case. Paralleling the previous work we see:

Theorem
$\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
$1 \mathrm{ACA}_{0}$
2 If $M=(B, G, R)$ is an infinite marriage problem where each boy knows only finitely many girls and has a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geqslant 1}$ such that for every $n \geqslant 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

Sketch of the reversal

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.

Sketch of the reversal

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.
To that end, let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an injection and construct $M=(B, G, R)$ as follows:

- $B=\left\{c_{n} \mid n \in \mathbb{N}\right\} \cup\left\{d_{n} \mid n \in \mathbb{N}\right\}$,
- $G=\left\{g_{n} \mid n \in \mathbb{N}\right\} \cup\left\{r_{n} \mid n \in \mathbb{N}\right\}$,
- for every $i,\left(c_{i}, g_{i}\right) \in R$ and $\left(d_{i}, r_{i}\right) \in R$, and
- if $f(m)=n$ then $\left(c_{n}, r_{m}\right) \in R$.

Sketch of the reversal

We assume statement (2) in order to prove statement (1). By Lemma III.1.3 of Simpson [3], it suffices to show (2) implies the existence of the range of an arbitrary injection.
To that end, let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an injection and construct $M=(B, G, R)$ as follows:

- $B=\left\{c_{n} \mid n \in \mathbb{N}\right\} \cup\left\{d_{n} \mid n \in \mathbb{N}\right\}$,
- $G=\left\{g_{n} \mid n \in \mathbb{N}\right\} \cup\left\{r_{n} \mid n \in \mathbb{N}\right\}$,
- for every $i,\left(c_{i}, g_{i}\right) \in R$ and $\left(d_{i}, r_{i}\right) \in R$, and
- if $f(m)=n$ then $\left(c_{n}, r_{m}\right) \in R$.

Let $h: B \rightarrow G$ such that $h\left(d_{i}\right)=r_{i}$ and $h\left(c_{i}\right)=g_{i}$ for each $i \in \mathbb{N}$. h is injective and a unique solution to M.

Sketch of the reversal

Apply the enumeration theorem to obtain $\left\langle b_{i}\right\rangle_{i \geqslant 1}$ where for every $n \geqslant 1\left|G\left(b_{1}, \ldots, b_{n}\right)\right|=n$.

Sketch of the reversal

Apply the enumeration theorem to obtain $\left\langle b_{i}\right\rangle_{i \geqslant 1}$ where for every $n \geqslant 1\left|G\left(b_{1}, \ldots, b_{n}\right)\right|=n$.

Suppose $f(j)=k$. Then $\left(c_{k}, r_{j}\right) \in R$ and $G\left(c_{k}\right)=\left\{g_{k}, r_{j}\right\}$.
Note $G\left(d_{j}\right)=\left\{r_{j}\right\}$. So d_{j} must appear before c_{k} in the enumeration of B.

Sketch of the reversal

Apply the enumeration theorem to obtain $\left\langle b_{i}\right\rangle_{i \geqslant 1}$ where for every $n \geqslant 1\left|G\left(b_{1}, \ldots, b_{n}\right)\right|=n$.
Suppose $f(j)=k$. Then $\left(c_{k}, r_{j}\right) \in R$ and $G\left(c_{k}\right)=\left\{g_{k}, r_{j}\right\}$.
Note $\mathcal{G}\left(d_{j}\right)=\left\{r_{j}\right\}$. So d_{j} must appear before c_{k} in the enumeration of B.

Well, this implies that k is in the range of f if and only if some boy d_{j} appears before c_{k} in the enumeration and $f(j)=k$.

We need only check finitely many values of f to see if k is in the range, hence, recursive comprehension proves the existence of the range of f.

Sketch of the reversal

Apply the enumeration theorem to obtain $\left\langle b_{i}\right\rangle_{i \geqslant 1}$ where for every $n \geqslant 1\left|G\left(b_{1}, \ldots, b_{n}\right)\right|=n$.
Suppose $f(j)=k$. Then $\left(c_{k}, r_{j}\right) \in R$ and $G\left(c_{k}\right)=\left\{g_{k}, r_{j}\right\}$.
Note $\mathcal{G}\left(d_{j}\right)=\left\{r_{j}\right\}$. So d_{j} must appear before c_{k} in the enumeration of B.

Well, this implies that k is in the range of f if and only if some boy d_{j} appears before c_{k} in the enumeration and $f(j)=k$.

We need only check finitely many values of f to see if k is in the range, hence, recursive comprehension proves the existence of the range of f.

Bounded Marriage Problems

In the bounded case, the result, as expected, paralleled the previous work.

Theorem
$\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:
$1 \mathrm{WKL}_{0}$
2 If $M=(B, G, R)$ is a bounded marriage problem with a unique solution f, then there is an enumeration of the boys $\left\langle b_{i}\right\rangle_{i \geqslant 1}$ such that for every $n \geqslant 1,\left|G\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\right|=n$.

An Open Question

To prove the enumeration theorem for infinite marriage problems we employed the following lemma.

Lemma
Suppose $M=(B, G, R)$ is a marriage problem with a unique solution, then for any $b \in B$ there is a finite set F such that $b \in F \subset B$ and $|G(F)|=|F|$.

The exact strength of this statement is still unknown.

References

[1] Jeffry L. Hirst, Marriage theorems and reverse mathematics, Logic and computation (Pittsburgh, PA, 1987), Contemp. Math., vol. 106, Amer.
Math. Soc., Providence, RI, 1990, pp. 181-196. DOI 10.1090/conm/106/1057822. MR1057822 (91k:03141)
[2] Jeffry L. Hirst and Noah A. Hughes, Reverse mathematics and marriage problems with unique solutions. Submitted.
[3] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009. DOI 10.1017/CBO9780511581007 MR2517689.

Questions?

Thank You.

