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Abstract

We analyze the logical strength of theorems on marriage problems
with unique solutions using the techniques of reverse mathematics,
restricting our attention to problems in which each boy knows only
finitely many girls. In general, these marriage theorems assert that
if a marriage problem has a unique solution then there is a way to
enumerate the boys so that for every m, the first m boys know ex-
actly m girls. The strength of each theorem depends on whether the
underlying marriage problem is finite, infinite, or bounded.

Our goal is to analyze the logical strength of some marriage theorems us-
ing the framework of reverse mathematics. The subsystems of second order
arithmetic used here are RCA0, which includes comprehension for recursive
(also called computable) sets of natural numbers, WKL0, which appends a
weak form of König’s Lemma for trees, and ACA0, which appends comprehen-
sion for arithmetically definable sets. Simpson’s book [5] provides detailed
axiomatizations of the subsystems and extensive development of the program
of reverse mathematics.
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We use the standard anthropocentric terminology for marriage theorems.
A marriage problem consists of a set B of boys, a set G of girls, and a
relation R ⊂ B × G where (b, g) ∈ R means “b knows g.” A solution of
the marriage problem is an injection f : B → G such that for all b ∈ B,
(b, f(b)) ∈ R. Informally, f assigns a spouse to each boy, chosen from among
his acquaintances and avoiding polygamy. In general, marriage theorems
provide necessary and sufficient conditions for the existence of solutions or,
in our case, for the existence of unique solutions. These sorts of results
are often expressed using other terminology such as transversals, systems of
distinct representatives (SDRs), and matchings in bipartite graphs.

As a notational convenience, we use some set theoretic notation as abbre-
viations for more complicated formulas of second order arithmetic. If b ∈ B,
we write G(b) for {g ∈ G | (b, g) ∈ R}. In the marriage problems for this
paper each boy knows at most finitely many girls, so for each b, RCA0 can
prove the existence of G(b). Although G(b) looks like function notation, it
is not. In general, RCA0 can prove the existence of a function uniformly
mapping each boy to (the integer code for) the finite set G(b) if and only
if the marriage theorem is bounded, as defined after Theorem 2. We fur-
ther abuse this notation by using formulas like g ∈ G(B0) to abbreviate
∃b ∈ B0((b, g) ∈ R). In settings that address more than one marriage prob-
lem, we write GM(B0) to denote girls known by boys in B0 in the marriage
problem M . Cardinality notation like |X| ≤ |Y | abbreviates the assertion
that there is an injection from X into Y . The formula |X| < |Y | abbreviates
the conjunction of |X| ≤ |Y | and |Y | 6≤ |X|. For finite sets, RCA0 can prove
many familiar statements about cardinality, for example, if X is finite and
y /∈ X then |X| < |X ∪ {y}|.

Given a marriage problem M = (B,G,R) with a solution f , for any
B0 ⊂ B the restriction of f is an injection of B0 into G(B0). Consequently,
RCA0 proves that if M has a solution then |B0| ≤ |G(B0)| for every B0 ⊂ B.
Philip Hall [4] proved the converse for finite marriage problems. The following
theorem shows that Philip Hall’s result can be formalized and proved in RCA0

and appears as Theorem 2.1 of Hirst [2].

Theorem 1. (RCA0) If M = (B,G,R) is a finite marriage problem satisfying
|B0| ≤ |G(B0)| for every B0 ⊂ B, then M has a solution.

Marshall Hall, Jr. [3] extended Philip Hall’s theorem to infinite marriage
problems. The following theorem shows that his result is equivalent to ACA0

and appears as Theorem 2.2 of Hirst [2]. Marriage problems in which boys
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are allowed to know infinitely many girls are considerably more complex and
not considered in this paper.

Theorem 2. (RCA0) The following are equivalent:

1. ACA0.

2. If M = (B,G,R) is a marriage problem such that each boy knows only
finitely many girls and |B0| ≤ |G(B0)| for every finite B0 ⊂ B, then M
has a solution.

Suppose that M = (B,G,R) is a marriage problem in which B and G
are subsets of N. We say that M is bounded if there is a function h : B → G
such that for each b ∈ B, G(b) ⊆ {0, 1, . . . , h(b)}. The function h acts as
a uniform bound on the girls that each boy knows, and also insures that
each boy knows only finitely many girls. Given such a bounding function,
recursive comprehension proves the existence of the function mapping each b
to (the code for) the finite set G(b). As illustrated by the following theorem,
bounded marriage theorems are often weaker than their unbounded analogs.
The following appears as Theorem 2.3 of Hirst [2].

Theorem 3. (RCA0) The following are equivalent:

1. WKL0.

2. If M = (B,G,R) is a bounded marriage problem such that |B0| ≤
|G(B0)| for every finite B0 ⊂ B, then M has a solution.

Our goal is to analyze theorems on necessary and sufficient conditions
for marriage problems to have unique solutions. A marriage problem with
a single boy has a unique solution if and only if he knows exactly one girl.
The following lemma shows that any finite marriage problem with a unique
solution must contain such a boy.

Lemma 4. (RCA0) If M = (B,G,R) is a finite marriage problem with a
unique solution f, then some boy knows exactly one girl.

Proof. Suppose we have M and f as above with |B| = n. Note that
|GM(B)| = n, since if |GM(B)| > n we could construct a new solution to M
using a girl not in the range of f , contradicting the uniqueness of f .

Let s be the smallest number such that there is a B0 ⊂ B with |B0| =
|GM(B0)| = s. We know such an s exists by the Σ0

0 least element principle,
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a consequence of Σ0
1 induction. If s = 1 then we have proved the lemma.

Suppose by way of contradiction that s > 1 and choose b0 ∈ B0. Since s > 1,
|GM(b0)| > 1, so we may choose g1 ∈ GM(b0) such that f(b0) 6= g1. Consider
M ′ = (B0−{b0}, GM(B0)−{g1}, R′) where R′ is the restriction of R to the
sets of M ′. We claim that M ′ has no solution. To see this, let h be a solution
of M′ and note that h ∪ (b0, g1) is a matching of (B0, GM(B0)) distinct from
f . Since |B0| = |GM(B0)|, f matches boys not in B0 to girls not in GM(B0),
so we may define

f ′(b) =


g1 if b = b0

h(b) if b ∈ B0−{b0}
f(b) otherwise.

This f ′ is a solution of M differing from f at b0, contradicting the uniqueness
of f . Thus M ′ has no solution. Apply Theorem 1 and find a set of boys B1 ⊂
B0−{b0} who know too few girls, that is, |B1| > |GM ′(B1)|. Since f is a so-
lution of M , |B1| ≤ |GM ′(B1)∪{g1}| so |B1| = |GM ′(B1)∪{g1}| = |GM(B1)|.
However, |B1| < |B0|, contradicting the minimality of s. Therefore s > 1
cannot hold, completing the proof of the lemma.

Now we can formulate a theorem on unique solutions to finite marriage
problems. Clearly, if we can line up the boys b1, b2, . . . , bn so that for each
m ≤ n the first m boys know exactly m girls, then the marriage problem has
a unique solution. This implication is provable in RCA0, as is its extension
to infinite marriage problems. The following theorem shows that the con-
verse for finite problems is provable in RCA0. As noted by Chang [1], the
combinatorial statement in the theorem is implicit in the work of Marshall
Hall, Jr. [3].

Theorem 5. (RCA0) If M = (B,G,R) is a finite marriage problem with n
boys and a unique solution, then there is an enumeration of the boys 〈bi〉i≤n
such that |G(b1, . . . , bm)| for every 1 ≤ m ≤ n.

Proof. Suppose M is as above. Working in RCA0, we will construct a se-
quence of initial segments of 〈bi〉i≤n. Apply Lemma 4 and let b1 be the first
boy (in some enumeration of B) such that |G(b1)| = 1. Suppose that t < n,
〈bi〉i≤t is defined, and |G(b1, . . . , bt)| = t. Since M has a unique solution, so
does M ′ = (B−{b1, . . . bt}, G−G(b1, . . . , bt), R

′), where R′ is the restriction
of R to the sets of M ′. Apply Lemma 4 and let bt+1 be the first boy not in
{b1, . . . , bt} such that |GM ′(bt+1)| = 1, completing the definition of 〈bi〉i≤t+1.
The desired enumeration is the nth initial segment.
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In light of the comments preceding Theorem 5, it could be reformulated
as a biconditional statement, giving a necessary and sufficient condition for
the existence of unique solutions to finite marriage problems. The same
reformulation could be carried out for Theorems 7 and 9 below. Now we
will analyze a version of Theorem 5 in the infinite setting, using ACA0 in its
proof. Paralleling the proof of Theorem 5, we begin with a lemma.

Lemma 6. (ACA0) Suppose M = (B,G,R) is a marriage problem such that
every boy knows finitely many girls and M has a unique solution. For any
b ∈ B there is a finite set F such that b ∈ F ⊂ B and |G(F )| = |F |.

Proof. Suppose f is the unique solution of M = (B,G,R). Let b ∈ B.
If |G(b)| = 1, the set F = {b} satisfies the conclusion of the lemma. If
|G(b)| > 1, a more complicated construction is required.

Assume |G(b)| > 1 and let g0 = f(b) and G(b) = {g0, g1, . . . , gm}. Con-
sider the marriage problem M1 = (B−{b}, G−{g1}, R1) where R1 denotes the
restriction of R to the sets of M1. Given a solution f1 of M1, the function
f1∪(b, g1) would be a solution of M distinct from f . Thus M1 has no solution.
Using ACA0, we may apply Theorem 2 and find a finite collection of boys
E1 ⊂ B−{b} such that |E1| > |GM1(E1)|. Thus |E1| ≥ |GM1(E1) ∪ {g1}|
and since GM1(E1) ∪ {g1} = GM(E1), we have |E1| ≥ |GM(E1)|. Since
M has a solution, |E1| ≤ |GM(E1)|, so combining inequalities shows that
|E1| = |GM(E1)|. For each i with 1 < i ≤ m and each gi ∈ G(b) search for
a similar finite set, finding an Ei ⊂ B with |G(Ei)| = |Ei| and gi ∈ G(Ei).
Since each Ei is a finite set with an integer code, recursive comprehension
suffices to prove the existence of the sequence E1, E2, . . . , Em and the union
F = {b} ∪i≤m Ei. Since each Ei is finite, F is finite and b ∈ F ⊂ B.

To complete the proof, we need only show that |F | = |G(F )|. Suppose
by way of contradiction that |G(F )| > |F |. In this case, since f maps F
into but not onto G(F ), we can choose g ∈ G(F ) such that for every c ∈ F ,
f(c) 6= g. Since f(b) = g0, g 6= g0. If g ∈ G(b), then for some i ≥ 1 we
have g = gi and g ∈ G(Ei). Since G(F ) = G(b) ∪

⋃
i≤mG(Ei), we may fix

an i such that g ∈ G(Ei). Since |Ei| = |G(Ei)|, f must map Ei onto G(Ei),
so for some c ∈ Ei, f(c) = g. This contradicts our choice of g, showing
that |G(F )| ≤ |F |. Since f is an injection of F into G(F ), we must have
|F | = |G(F )|.

Note that the only use of ACA0 in the preceding proof is the application
of Theorem 2. This will be useful in adapting our results to the bounded
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marriage theorem setting.
Now we can analyze the extension of Theorem 5 to infinite marriage

problems. Like the result of Marshall Hall, Jr. analyzed in Theorem 2, this
statement is equivalent to ACA0.

Theorem 7. (RCA0) The following are equivalent:

1. ACA0.

2. Suppose M = (B,G,R) is a marriage problem such that every boy
knows finitely many girls. If M has a unique solution then there is an
enumeration of the boys 〈bi〉i≥1 such that |G(b1, . . . , bn)| = n for every
n ≥ 1.

Proof. To prove that (1) implies (2), we will work in RCA0, making each
application of ACA0 explicit. Let M = (B,G,R) be a marriage problem as
described in (2). Let 〈b′i〉i≥1 be an arbitrary initial enumeration of B. Search
for a finite set F1 ⊂ B such that b′1 ∈ F1 and |GM(F1)| = |F1|. Define
n1 = |F1|. By Lemma 6, this search must succeed. Note that ACA0 is used
here in the application of Lemma 6 and to determine the value of |GM(F1)|.
We claim that f restricted to F1 is a unique solution of (F1, G(F1), R). To
see this, suppose f ′ is a solution of (F1, G(F1), R) differing from f . Since f is
injective and maps F1 onto G(F1), f must map B−F1 into G−G(F1), Thus
the extension of f ′ defined by

f ′(b) =

{
f ′(b) if b ∈ F1

f(b) if b ∈ B−F1

is a solution of M differing from f , contradicting the uniqueness of f . Since
(F1, G(F1), R) has a unique solution, by Theorem 5, there is an enumeration
of the boys 〈b11, b12, . . . , b1n1

〉 of F1 such that |G(b11, b
1
2, . . . , b

1
m)| = m for every

m with 1 ≤ m ≤ n1.
Suppose F1, . . . , Fj are sequences that have been constructed so that for

each i ≤ j and each t ≤ ni, Fi = 〈bi1, bi2, . . . , bini
〉 and

|G({bi1, bi2, . . . , bit} ∪
⋃
k<i

Fk)| = t+
∑
k<i

nk.

Note that f restricted to B− ∪k≤j Fj is a unique solution of the marriage
problem Mj+1 = (B− ∪k≤j Fk, G− ∪k≤j G(Fk), R). Let b′ denote the first
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element (in our initial enumeration of B) appearing in B− ∪k≤j Fk. Search
for a finite set Fj+1 ⊂ B− ∪k≤j Fk such that b′ ∈ Fj+1 and |GMj+1

(Fj+1)| =
|Fj+1|. Define nj+1 = |Fj+1|. As before, Lemma 6 insures that the search
will succeed. ACA0 is applied here in the use of Lemma 6 and in determining
values of |GMj+1

(Fj+1)|. As before, f restricted to Fj+1 is a unique solution
of Mj+1 restricted to Fj+1, so by Theorem 5 there is an enumeration of the
boys 〈bj+1

1 , bj+1
2 , . . . , bj+1

nj+1
〉 in Fj+1 such that GMj+1

(bj+1
1 , . . . , bj+1

t )| for every
t with 1 ≤ t ≤ nj+1. Consequently, for every 1 ≤ t ≤ nj+1,

|G({bj+1
1 , bj+1

2 , . . . , bj+1
t } ∪

⋃
k≤j

Fk)| = t+
∑
k≤j

nk.

Given the existence of each finite sequence Fj, recursive comprehension suf-
fices to prove the existence of the concatenation of the finite sequences
〈〈bj1, . . . , bjnj

〉 | j ≥ 1〉, and this sequence satisfies the conclusion of item
(2) in the statement of the theorem.

To prove that (2) implies (1), we will work in RCA0 and assume (2). By
Lemma III.1.3 of Simpson [5], it suffices to use (2) to prove the existence of
the range of an arbitrary injection. Let f : N → N be an injection. Using
recursive comprehension, construct the marriage problem M = (B,G,R)
with

• B = {cn | n ∈ N} ∪ {dn | n ∈ N},

• G = {gn | n ∈ N} ∪ {rn | n ∈ N},

• for every i, (ci, gi) ∈ R and (di, ri) ∈ R, and

• if f(m) = n then (cn, rm) ∈ R.

Let h : B → G such that h(di) = ri and h(ci) = gi for each i ∈ N. Clearly, h
is injective and a solution to M . Note that any solution must match each di
with ri, thus no ci can be matched to a ri and so every ci must be matched
with gi. Hence, h is a unique solution to M .

Apply item (2) and let 〈bi〉i≥1 be an enumeration of B such that for every
n ≥ 1 we have |G(b1, . . . , bn)| = n. Suppose f(j) = k. Then (ck, rj) ∈ R
and G(ck) = {gk, rj}. Since ck ∈ B, for some n we have ck = bn. If dj /∈
{b1, . . . , bn−1} then for each i ≤ n− 1, G(bi) ∩G(ck) = ∅. In this case,

|G(b1, . . . , bn)| = |G(b1, . . . , bn−1)|+ |G(ck)| = (n− 1) + 2 = n+ 1,
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contradicting |G(b1, . . . , bn)| = n. Summarizing, whenever f(j) = k, dj must
appear before ck in the enumeration of the boys. Thus k is in the range of f
if and only if for some b appearing before ck in the enumeration, b = dj and
f(j) = k. Since we need only check finitely many values of f to see if k is
in the range, recursive comprehension proves the existence of the range of f ,
completing the proof of the theorem.

Like Theorem 5, the preceding theorem continues to hold if the impli-
cation in item (2) is changed to a biconditional. While such a formulation
provides a complete characterization of the marriage problems with unique
solutions, it weakens the statement of the reversal.

As noted in the introduction, bounded marriage problems are often weaker
than their unbounded versions. This is also true for the following bounded
analogs of Lemma 6 and Theorem 7, as shown by the next two results.

Lemma 8. (WKL0) Suppose M = (B,G,R) is a bounded marriage problem
and M has a unique solution. For any b ∈ B there is a finite set F such that
b ∈ F ⊂ B and |G(F )| = |F |.

Proof. Proceed exactly as in the proof of Lemma 6, replacing each application
of Theorem 2 with an application of Theorem 3.

Theorem 9. (RCA0) The following are equivalent:

1. WKL0.

2. Suppose M = (B,G,R) is a bounded marriage problem. If M has a
unique solution then there is an enumeration of the boys 〈bi〉i≥1 such
that |G(b1, . . . , bn)| = n for every n ≥ 1.

Proof. To prove that (1) implies (2), repeat the corresponding portion of the
proof of Theorem 7, replacing uses of ACA0 with uses of WKL0 as follows.
First, substitute Lemma 8 for Lemma 6 everywhere. Note that the bounding
function for M also acts as a bounding function for any marriage problem
created by deleting sets of boys and girls from M . Consequently, we may
use the bounding function and recursive comprehension to compute G(F ) for
each finite set F whenever required.

The reversal requires a completely new argument. We will use (2) to
prove that any binary tree (with nodes labeled 0 or 1) with no infinite paths
is finite. Toward this end, suppose T is a binary tree with no infinite paths.
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As in section III.7 of Simpson [5], we can identify each node of T with a
binary sequence, σ ∈ 2<N. Construct the marriage problem M = (B,G,R)
by letting B = {bσ | σ ∈ T}, G = {gσ | σ ∈ T}, and

R = {(bσ, gσ) | σ ∈ T} ∪ {(bσ, gσai) | σ ∈ T ∧ σai ∈ T}.

Note that since G(bσ) = {gσ, gσa0, gσa1} ∩ G for all σ, M is a bounded
marriage problem.

Define f : B → G by f(bσ) = gσ. We claim that f is a unique solution of
M . To verify this let f1 be a second solution of M where f1(bσ) = gσai for
some i ∈ {0, 1}. Fix such a σ and i and let σ0 = σ. Given σn let σn+1 = τ
where f1(bσn) = gτ . Since f1 is injective, an easy induction argument shows
that σn+1 must always be an extension of σn. Hence, 〈σn | n ∈ N〉 forms an
infinite path through T , yielding a contradiction. Thus f is unique.

Since M has a unique solution, we can apply item (2) to M and enumerate
the boys 〈bi〉i≥1 so that |G(b1, . . . , bn)| = n for all n. Recursive comprehen-
sion proves the existence of translation functions between the two types of
subscripting on the boys. Let r : T → N be the bijection defined by r(σ) = n
if and only if bn = bσ.

We claim that each boy appears in the enumeration after all of his proper
successors in the tree. Using σ ≺ τ to denote that σ is a proper initial
segment of τ , our claim becomes: if σ ≺ τ ∈ T , then r(σ) > r(τ). To prove
this, suppose by way of contradiction that for some σ ≺ τ ∈ T , r(σ) < r(τ).
By the Σ0

0 least element principle (a consequence of Σ0
1 induction) we can fix

a shortest sequence τ such that r(σ) < r(τ) for some σ ≺ τ . Because τ is
shortest, there is no α such that r(α) > r(τ) and σ ≺ α ≺ τ . Thus we may
assume that τ is an immediate successor of σ. Summarizing, we have r(σ) <
r(τ) and τ = σai for some i ∈ {0, 1}. Let B′ = {b1, b2, . . . , br(σ)}. Using
the node-based indices for the boys, we can write B′ = {bα | r(α) ≤ r(σ)}.
Note that r(τ) > r(σ), so bτ /∈ B′. By the definition of M , (bσ, gτ ) ∈ R,
so gτ ∈ G(B′). Also, for every bα ∈ B′, (bα, gα) ∈ R, so gα ∈ G(B′). Thus
|G(B′)| > |B′|. However, B′ is an initial segment of the enumeration of B
provided by the application of (2), so |G(B′)| = |B′|. This contradiction
completes the proof that each boy appears in the enumeration after all of his
proper successors in the tree.

The empty sequence 〈 〉 is in T , so for some n, b〈 〉 = bn Since bn appears
after every boy corresponding to a nonempty node of T , we know T is finite,
completing the proof of the reversal and the theorem.
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At this time, we have been unable to determine the exact strength of
some of the lemmas in the preceding material. For example, although we
know that Lemma 6 is provable in ACA0, we do not know if it can be proved
in a weaker subsystem. Consider the following formulation of an infinite
version of Lemma 4: If M is a marriage problem in which each boy knows
only finitely many girls and M has a unique solution, then some boy knows
exactly one girl. Lemma 6 and Lemma 4 give a proof in ACA0, but the
following theorem shows that at most WKL0 is required.

Theorem 10. (WKL0) Suppose M is a marriage problem in which every boy
knows at least two girls and at most finitely many girls. If M has a solution,
then M has at least two solutions.

Proof. Assume WKL0. Let M = (B,G,R) be a marriage problem with solu-
tion f : B → G and suppose that every boy knows at least two girls. Define
a function h0 : B → G by letting h0(b) be the first girl other than f(b) that
b knows. Formally, h0(b) = µg((b, g) ∈ R ∧ f(b) 6= g). Define h1 : B → G
by h1(b) = max{h0(b), f(b)} and let R′ = {(b, g) | f(b) = g ∨ h0(b) = g}.
Recursive comprehension proves the existence of h0, h1, and R′. The society
M ′ = (B,G,R′) is bounded by h1 and has f as a solution. Every boy in M ′

knows exactly two girls. By Theorem 9, if f is a unique solution of M ′, then
some boy in B knows exactly one girl, contradicting the construction of M ′.
Consequently, M ′ has at least two solutions. Since every solution of M ′ is
also a solution M , M also has at least two solutions.
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