
On the minuscule representation of type Bn

William J. Cook∗† and Noah A. Hughes∗‡

April 23, 2014

Abstract

Using only sl2 representation theory, we construct the set of weights of the minuscule
representation of type Bn (also known as the spin representation). We then derive formulas
for the simple reflections viewed as permutations of the weights. Using a computer aided
calculuation we study the cycle structures of the permutations representing the Weyl group
of type Bn as it acts on the set of weights of the minuscule representation. Then we are able
to establish that, for certain ranks, the irreduciblity of the minuscule representation cannot
be detected by cycle structures alone.1

1 Introduction

Minuscule representations of simple Lie algebras appear in many diverse applications. In fact, a
whole book [G] devoted to their combinatorial structure was recently published. Each simple Lie
algebra has infinitely many isomorphism classes of finite dimensional irreducible representations.
However, not every simple Lie algebra possesses a minuscule representation. Those which do
have only a handful.

Minuscule representations have the interesting property that all of their weights lie in a
single Weyl group orbit. This then implies that all of the weight spaces are one dimensional.
The irreducibility of such a module is guaranteed by the transitive action of the Weyl group.
We set out to find when this transitivity (and thus irreducibility) can be seen from the cycle
structures of the Weyl group elements (viewed as permutations) alone.

In this paper, we deal only with simple Lie algebras of type Bn. Such algebras have only one
minuscule representation which is also known as the spin representation. Spin representations
are commonly constructed using Clifford algebras. We are able to avoid such algebras as we use
nothing more than sl2 representation theory.

After some introductory material, we explicitly determine the set of weights of the minuscule
representations of type Bn. This is done inductively by building higher rank modules from lower
rank ones. We then derive formulas for the action of the simple reflections (which generate the
Weyl group) on the set of weights of the minuscule representation.

First we will recall some terminology and establish notation related to simple Lie algebras.
We refer the readers to [EW] and [H] for more details. Unless otherwise stated all vector spaces

∗Department of Mathematical Sciences, Appalachian State University, 121 Bodenheimer Dr., Boone, NC 28608
†cookwj@appstate.edu http://mathsci.appstate.edu/∼cookwj
‡hughesna@appstate.edu
1Subject classification: Primary = 17B10 [Representations, algebraic theory (weights)] and Secondary = 20F55

[Reflection and Coxeter groups] Keywords: Lie algebra, minuscule representation, Weyl group

1

mailto:cookwj@appstate.edu
mailto:hughesna@appstate.edu

will be finite dimensional and defined over the complex numbers, C. We will let Z denote the
ring of integers.

1.1 Simple Lie algebras

A Lie algebra is a vector space g (over C) equipped with a bilinear multiplication [·, ·] : g×g→ g,
called the Lie bracket, which is alternating ([x, x] = 0 for all x ∈ g) and satisfies the Jacobi
identity ([[x, y], z] + [[y, z], x] + [[z, x], y] = for all x, y, z ∈ g). For each g ∈ g we define ad(g) :
g→ g to be left multiplication by g: ad(g)(x) = [g, x]. A subalgebra of g is a subspace of g which
is closed under the Lie bracket (h ⊆ g such that for all x, y ∈ h we have [x, y] ∈ h). An ideal of
g is a subspace of g which absorbs multiplication by elements of g (i ⊆ g such that for all x ∈ i
and g ∈ g we have [g, x] ∈ i). We call g abelian if [x, y] = 0 for all x, y ∈ g. A non-abelian Lie
algebra with no proper non-trivial ideals is called simple – that is – g is simple if [g, g] 6= 0 and
if i is an ideal of g, then i = 0 or g.

As an example, R3 equipped with the familiar cross product is a 3-dimensional simple Lie
algebra (over the field of real numbers R). If we let gln denote the n×n complex matrices, then gln
becomes the general linear Lie algebra when given the commutator bracket [A,B] = AB −BA.
The set of all trace zero n× n complex matrices is called the special linear Lie algebra sln. It is
a subalgebra of gln and turns out to be simple when n ≥ 2.

Let ϕ : g1 → g2 be a linear map between two Lie algebras. We call ϕ a homomorphism if
ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g1. Of course, a bijective homomorphism is an isomorphism.

One of the early triumphs of Lie theory was Killing and Cartan’s classification of all finite
dimensional simple Lie algebras (over C). Killing and Cartan were able to show that each finite
dimensional simple Lie algebra was isomorphic to one of the algebras on their list:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, and G2.

Algebras of types A through D are called classical algebras. Those of type E, F , and G are
called exceptional algebras. We refer the reader to [EW] for an accessible discussion of this
classification or to [H] or [C] for more complete discussions.

A Cartan subalgebra h of a simple Lie algebra g is a subalgebra which is nilpotent (this means
that [[· · · [[h, h], h], . . .], h]︸ ︷︷ ︸

k−times

= 0 for some integer k > 0) and self-normalizing (if x ∈ g, y ∈ h, and

[x, y] ∈ h then x ∈ h). Equivalently, a Cartan subalgebra is a maximal toral subalgebra (a toral
subalgebra is a subalgebra h such that for all h ∈ h, the linear endomorphism ad(h) : g → g is
diagonalizable). Every Cartan subalgebra of a finite dimensional simple Lie algebra g has the
same dimension. This dimension is called the rank of the simple Lie algebra.

Since all toral subalgebras h are abelian, we have that for all x, y ∈ h, ad(x) and ad(y)
commute and so the space of endomorphisms ad(h) can be simultaneously diagonalized. Thus
g decomposes into a collection of simultaneous eigenspaces for ad(h) for any toral subalgebra h.
By choosing h to be maximal toral, our eigenspaces are in some sense maximally refined.

For what follows, let g be a simple Lie algebra and let h be a Cartan subalgebra of g. Let
n = dim(h) be the rank of g. Since ad(h) is simultaneously diagonalizable, g =

∏
α∈h∗

gα where

h∗ = {f : g→ C | f is linear} is the dual space of h and gα = {g ∈ g | [h, g] = α(h)g for all h ∈
h}. When non-trivial, gα is a simultaneous eigenspace corresponding to eigenvalue α(h) for each
h ∈ h. Since h is abelian and self-normalizing, g0 = h. If 0 6= α ∈ h∗ and gα 6= 0, we call α a
root and gα a root space of g. Let ∆ ⊂ h∗ be the set of roots of g.

2

Given a set of roots ∆, there exists a subset Π ⊆ ∆ such that each root can be expressed
as a non-positive or non-negative integral linear combination of elements of Π. In this case we
call the elements of Π simple roots. Every root system has many equivalent collections of simple
roots. Each such set’s cardnality is exactly the rank of g (i.e. the dimension of h). Let us fix
such a set of simple roots Π = {α1, . . . , αn} ⊆ ∆. So for each α ∈ ∆ there exists c1, . . . , cn ∈ Z
such that α = c1α1 + · · · + c`αn with either all ci ≥ 0 (for a positive root) or all ci ≤ 0 (for a
negative root).

1.2 The Weyl group and irreducible modules

The simple roots, Π = {α1, . . . , αn}, form a basis for h∗. The fundamental weights {λ1, λ2, . . . , λn}
form another important basis for h∗. The root and weight bases are related by the Cartan matrix
of g. In particular, if A = (aij)1≤i,j≤n is the Cartan matrix, then αi = ai1λ1 +ai2λ2 + · · ·+ainλn
for 1 ≤ i ≤ n.

For each 1 ≤ i ≤ n, we define σi : h∗ → h∗ by σi(λj) = λj − δijαi and extend linearly (where
δij is the Kronecker delta – that is – δii = 1 and δij = 0 for i 6= j). The map σi is called the
simple reflection associated with the simple root αi. Let W(g) = 〈σ1, σ2, . . . , σn〉 be the group
generated by the simple reflections (generated as a subgroup of, for example, GL(h∗)). This is
called the Weyl group of g.

A (finite dimensional) vector space M (over C) equipped with an bilinear g-action (g,v) 7→
g · v is a g-module if [x, y] · v = x · (y · v) − y · (x · v) for all x, y ∈ g and v ∈ M . A
homomorphism ϕ : g → gl(M) (where gl(M) is equipped with the commutator bracket) is
called a representation. It is not hard to show that every module gives rise to a representation
and vice-versa. Specifically, given a module action or representation, one can define the other
structure as follows: x · v = (ϕ(x))(v). For what follows, we will treat the words “module” and
“representation” as synonyms.

Let ϕ : M1 → M2 be a linear map between two g-modules. If ϕ(g · v) = g · ϕ(v) for all
g ∈ g and v ∈ M1, then ϕ is a g-module map. A bijective module map is called a (g-module)
isomorphism.

A subspace closed under the action of g is called a submodule. A non-trivial module (M 6= 0)
which has no non-trivial proper submodules (if N is a submodule, then N = 0 or N = M) is
called an irreducible module. Suppose M is a g-module and λ ∈ h∗, we define Mλ = {v ∈
M | h · v = λ(h)v for all h ∈ h}. If Mλ 6= 0, we say that Mλ is a weight space (whose elements
are weight vectors) with weight λ. Just as g is a direct sum of root spaces, g-modules are direct
sums of weight spaces: M =

∏
λ∈h∗

Mλ.

Let M be an irreducible g-module. There exists a (unique) weight λ ∈ h∗ of M such that

given any other weight µ ∈ h∗ we have µ = λ −
n∑
i=1

biαi where bi ∈ Z and bi ≥ 0. So every

other weight is obtained by subtracting certain collections of positive roots from this weight.
Such a weight, λ, is unique and is called the highest weight of M . If λ ∈ h∗ and there exists

ci ∈ Z, ci ≥ 0 such that λ =
n∑
i=1

ciλi (the λi’s are the fundamental weights), then λ is a dominant

integral weight.
Highest weights of finite dimensional irreducible modules are dominant integral. Conversely,

each dominant integral weight is the highest weight of some finite dimensional irreducible module.
Two irreducible modules with the same highest weight are isomorphic, so we have a bijection

3

between the set of dominant integral weights and the isomorphism classes of finite dimensional
irreducible modules.

Let λ be a dominant integral weight for for some simple Lie algebra of type Xn. We denote
the irreducible highest weight Xn-module with highest weight λ by L(Xn, λ) or just L(λ) when
the algebra is understood.

1.3 Minuscule modules

There are many equivalent ways of defining minuscule weights. In fact, 6 equivalent conditions
are given in [B] (see chapter VIII section 7.3). The following definition best fits our purposes:

Definition 1.1. Let L(λ) be an irreducible finite dimensional g-module with non-zero highest
weight λ ∈ h∗. Then λ is a minuscule weight and L(λ) is a minuscule module if the Weyl group
W(g) acts transitively on the set of weights of L(λ) (i.e. W(g) · λ is the set of all weights of
L(λ)).

Given an g-module M , we know M decomposes into weight spaces: Mλ for λ ∈ h∗. The
dimension of a weight space Mλ is called the multiplicity of the weight λ.

If µ = w ·λ for µ, λ ∈ h∗ and w ∈W , then Mµ and Mλ have the same dimension. Therefore,
weights lying in an orbit of the Weyl group all have the same multiplicity. Thus since the
weights of a minuscule module all lie in a single Weyl group orbit, the weight spaces in a
minuscule module must all have the same multiplicity as the highest weight. But the highest
weight space for an irreducible module is always one dimensional. Therefore, all the weight
spaces in a minuscule module are one dimensional and the dimension of a minuscule module is
the same as the number of its weights.

Both [H] (section 13, page 72, exercise 13) and [B] (chapter VIII, section 7.3, page 132) give
the following table of minuscule weights for finite dimensional simple Lie algebras:

Type: An Bn Cn Dn E6 E7

Minuscule Weights: λ1, . . . , λn λn λ1 λ1, λn−1, λn λ1, λ6 λ7

Let us note that algebras of type F4, E8, and G2 have no minuscule representations. Also,
be warned, we will be reversing the indices of the simple roots of our algebra of study, Bn, so
that the minuscule representation will have highest weight λ1 (instead of λn).

For further information about minuscule representations we direct the reader to either [B]
Chapter VII Section 7.3 or the tract [G] by R. M. Green. Green’s book is entirely devoted to
the study of minuscule representations and contains a wealth of information about them.

1.4 sl2-representation theory

It cannot be overstated how important the study of the smallest simple Lie algebra sl2 (type A1)
is to the classification and understanding of the finite dimensional simple Lie algebras and their
representation theory. Each simple Lie algebra is essentially built from copies of sl2. Likewise
in a similar way each representation of a simple Lie algebra is built from copies of irreducible
sl2-representations. Let us recall some facts about irreducible sl2-modules.

First,

sl2 = {X ∈ C2×2 | tr(X) = 0} = span

{
E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]}
4

(2 × 2 traceless matrices) where [X,Y] = XY − Y X. We have [H,E] = 2E, [H,F] = −2F ,
[E,F] = H. Note that h = span(H) is a Cartan subalgebra for sl2. Define α1 ∈ h∗ by α1(H) = 2.
Then α1 is our simple root and λ1 where α1 = 2λ1 is the corresponding fundamental weight.

Suppose M is an irreducible sl2-module. Then M = L(A1, kλ1) = L(kλ1) for some non-
negative integer k. The weights of M are kλ1, kλ1−α1 = (k−2)λ1, . . . , kλ1−kα1 = (k−2k)λ1 =
−kλ and each of the corresponding weight spaces are 1-dimensional. In particular, if M = L(λ1),
then the only weights are λ1 and λ1 − α1 = λ1 − 2λ1 = −λ1.

By identifying the α1 with “2” and λ1 with “1” we get that the weights of L(k) form the set
of all even (if k is even) or all odd (if k is odd) integers between −k and k.

Given a simple Lie algebra g with root α, sα = gα ⊕ [gα, g−α] ⊕ g−α is a subalgebra which
is isomorphic with sl2. So any g-module decomposes as an sl2-module for each copy of sl2

associated with root α. In particular, if µ =
n∑
i=1

ciλi is a weight of a finite dimensional g-module

M and ci > 0, then treating M as an sl2 ∼= sαi-module, we see that M contains a copy of the
irreducible sl2-module L(A1, ci). Therefore, µ, µ−αi, µ− 2αi, . . . , µ− ciαi are all weights of M .
We call this an αi-weight string.

1.5 Simple Lie algebras of type Bn

We now turn to the simple Lie algebras of type Bn. Algebras of type Bn can be realized as the
special orthogonal Lie algebras so2n+1. Specifically, letting In denote the n× n identity matrix,
we have that the special orthogonal Lie algebra is the following set of (2n+1)×(2n+1) complex
matrices:

so2n+1 =

X ∈ gl2n+1

∣∣∣∣∣ XT

1 0 0
0 0 In
0 −In 0

 = −

1 0 0
0 0 In
0 −In 0

X
 .

This is a 2n2 + n dimensional simple Lie algebra of rank n. Let us fix a collection of
simple roots Π = {α1, . . . , αn} and corresponding fundamental weights Λ = {λ1, . . . , λn} for
this algebra. We have that the Cartan matrix (the change of basis matrix from Λ to Π) is

A =

2 −1 0 · · · 0 0
−2 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

with corresponding Dynkin diagram

z z z z zr r r��
@@1 2 3 n− 1 n

We would like to stress that our choice of indices is non-standard. Usually the node at the
end of the diagram with the double bar and arrow comes last. We have chosen this non-standard

5

labeling so that we have the natural embedding Bn ⊂ Bn+1. In particular, deleting the final
node (or final row and column from our Cartan matrix) we get a type B algebra of with rank
decreased by 1.

Explicitly we have the following relationships between our fundamental weights and simple
roots: α1 = 2λ1 − λ2, α2 = −2λ1 + 2λ2 − λ3, α3 = −λ2 + 2λ3 − λ4, α4 = −λ3 + 2λ4 − λ5,
. . . , αn−1 = −λn−2 + 2λn − λn−1, αn = −λn−1 + 2λn. For convenience we will write αn =
−λn−1 + 2λn − λn+1.

Notice that if we set λn+1 = 0, then αn is last simple root of Bn. Leaving it alone yields the
next to last simple root of Bn+1. Also, notice that if we allow n = 1, we get that our Cartan
matrix is A = [2] so that B1 = A1 (indeed so3 ∼= sl2). We will allow this case and note that λ1
is still a minuscule weight in this n = 1 case.

2 The weights of the minuscule representation of type Bn

Recall that the irreducible representation of Bn with highest weight λ1 (according to our non-
standard indexing) is a minuscule representation. Fix the notation Mn = L(Bn, λ1). One can
show that when we restrict the action of Bn to the copy of Bn−1 obtained by deleting the final
simple root, Mn decomposes into 2 copies of Mn−1. That is as Bn−1-modules L(Bn, λ1) ∼=
L(Bn−1, λ1) ⊕ L(Bn−1, λ1). We will demonstrate this by explicitly determining the weights of
Mn. This will be done using just a few basic facts about sl2-representation theory. Let Wn be
the weights of Mn.

Theorem 2.1. Let W1 = {λ1,−λ1 + λ2} and Wn = Wn−1 ∪ (λn+1 −Wn−1) (disjoint union),
then both ±Wn are the set of weights for L(Bn, λ1).

Before beginning the proof, notice that our weights Wn reference “λn+1”. Recall that λn+1 =
0 when treating these as weights for the Bn-moduleMn, so the λn+1’s are ghosts or echoes coming
from the corresponding Bn+1-module Mn+1. This begs the question, “Why keep them around?”
It turns out that these “ghosts” help streamline our proofs and allow for a very nice inductive
argument.

Proof:
Note that B1 = A1, so M1 is the irreducible sl2-module with highest weight 1. Therefore,

W1 = {λ1,−λ1}.
Define W0 = {λ1} (which would be {0} if we could allow a B0 case). Then W0∪(λ2 −W0) =

{λ1, λ2 − λ1}. So W1 = W0 ∪ (λ2 −W0) (when we set λ2 = 0) as required.
Alternatively, we could check that W1 = {λ1, −λ1 + λ2} is closed under the action of the s1

(the copy of sl2 built from the ±α1 root spaces). The coefficient of λ1 is 1, so we need to go down
by only 1 copy of α1 to get our entire sl2-string: λ1 − α1 = λ1 − (2λ1 − λ2) = −λ1 + λ2 ∈ W1.
Now because B1 is generated by the root spaces for ±α1, we must have that this is a complete
set of weights for M1.

Likewise, (λ1−λ2)−α1 = (λ1−λ2)−(2λ1−λ2) = −λ1 so −W1 = {−λ1, λ1−λ2} is complete
set of weights for M1. Notice that if we set λ2 = 0, then W1 = −W1 = {λ1,−λ1} is the set of
weights for M1 = L(B1, λ1) (without “ghosts”).

To get our inductive argument going we need to check the rank n = 2 and n = 3 cases as
well (this is to get past the first few simple roots whose formulas do not fall into the pattern of
the later roots).

6

Consider W2 = W1 ∪ (λ3 −W1). We know that ±W1 are closed with respect to α1-weight
strings and thus λ3 −W1 is as well (because λ3 does not interact with the root α1 = 2λ1 − λ2
at all). Let us check for closure with respect to α2-weight strings.

The only weight in W1 in which λ2 appears with a positive coefficient is −λ1 + λ2. The
coefficient of λ2 is 1 so we only need to go down by 1 copy of α2 (again appealing to sl2-
representation theory):

(−λ1 + λ2)− α2 = (−λ1 + λ2)− (−2λ1 + 2λ2 − λ3) = λ3 − (−λ1 + λ2) ∈ λ3 −W1.

Now λ2 does not appear in any of the weights in λ3 −W1 with a positive coefficient, so we
have finished checking the close under α2-weight strings. Thus since W2 = W1 ∪ (λ3 −W1) is
closed under the action of the α1 and α2-weight strings and since the root spaces of ±α1 and
±α2 generate B2, we have that W2 must be the complete set of weights for M2.

If we consider −W2 = −W1 ∪ (−λ3 +W1), then the only change is that the single weight
with a positive λ2 coefficient is −λ3 − λ1 + λ2. Again we need only go down by 1 copy of α2:

(−λ3 − λ1 + λ2)− α2 = (−λ3 − λ1 + λ2)− (−2λ1 + 2λ2 − λ3) = −(−λ1 + λ2) ∈W1.

As before, both ±W2 are the set of weights for M2. If we set λ3 = 0, we get

W2 = −W2 = {λ1,−λ1 + λ2, λ1 − λ2,−λ1}

is the set of weights for M2 = L(B2, λ1) (without “ghosts”).
Let us take care of one last base case – that of W3. First, since ±W2 are closed under α1

and α2-weight strings and thus so is λ4 −W2 (since λ4 has no interactions with α1 = 2λ1 − λ2
or α2 = −2λ1 + 2λ2 − λ3). So W3 = W2 ∪ (λ4 −W2) is closed with respect to α1 and α2-weight
strings. Let’s check the α3-weight strings.

Notice that W3 = W2 ∪ (λ4 −W2) = W1 ∪ (λ3 −W1) ∪ (λ4 −W1) ∪ (λ4 − λ3 +W1). So the
only weights with positive λ3 coefficients appear in λ3 −W1 = {λ3 − λ1, λ3 + λ1 − λ2}. In both
cases the coefficient of λ3 is 1 so we only need to go down by 1 copy of α3:

(λ3 − λ1)− α3 = (λ3 − λ1)− (−λ2 + 2λ3 − λ4) = λ4 − (λ1 − λ2 + λ3) ∈ λ4 −W2 ⊂W3,

(λ1 − λ2 + λ3)− α3 = (λ1 − λ2 + λ3)− (−λ2 + 2λ3 − λ4) = λ4 − (−λ1 + λ3) ∈ λ4 −W2 ⊂W3.

Therefore,

W3 = {λ1,−λ1+λ2, λ1−λ2+λ3,−λ1+λ3, λ1−λ3+λ4,−λ1+λ2−λ3+λ4, λ1−λ2+λ4,−λ1+λ4}

is closed under α1, α2, and α3-weight strings and thus is the complete set of weights of M3.
Likewise, the same is true for −W3.

Moreover, setting λ4 = 0, we get that

W3 = −W3 = {λ1,−λ1 + λ2, λ1 − λ2 + λ3,−λ1 + λ3, λ1 − λ3,−λ1 + λ2 − λ3, λ1 − λ2,−λ1}

is the set of weights for M3 = L(B3, λ1) (without “ghosts”).
Now consider some n ≥ 4 (we have already proven cases n = 1, 2, 3). Suppose that for each

j < n, ±Wj is closed under αk-weight strings for k = 1, . . . , j. In particular, ±Wn−1 are closed
under α1, . . . , αn−1-weight strings. Therefore, so is λn+1−Wn−1 since λn+1 does not interact with

7

any α1, . . . , αn−1 (they only involve λk where k ≤ n). Therefore, Wn = Wn−1 ∪ (λn+1 −Wn−1)
is closed under α1, . . . , αn−1-weight strings. This leaves us to check the αn-weight string.

Next, notice that

Wn = Wn−1 ∪ (λn+1 −Wn−1) = Wn−2 ∪ (λn −Wn−2) ∪ (λn+1 −Wn−2) ∪ (λn+1 − λn +Wn−2) .

Thus λn appears with a positive coefficient only in the subset λn − Wn−2. Here, as always,
λn appears with coefficient 1 (Wn−2 involves only λ1, . . . , λn−1 so it cannot contribute to λn’s
coefficient).

Consider λn − µ where µ ∈Wn−2. Then, because n > 2, αn = −λn−1 + 2λn − λn+1 so

(λn − µ)− αn = (λn − µ)− (−λn−1 + 2λn − λn+1) = λn+1 − λn + (λn−1 − µ).

Now recall that µ ∈Wn−2 = Wn−3 ∪ (λn−1 −Wn−3), so either µ ∈Wn−3 or µ ∈ λn−1 −Wn−3.

Case 1: µ ∈Wn−3, so λn−1 − µ ∈ λn−1 −Wn−3 ⊂Wn−2.

Case 2: µ ∈ λn−1 − Wn−3, so µ = λn−1 − µ′ for some µ′ ∈ Wn−3. Therefore, λn−1 − µ =
λn−1 − (λn−1 − µ′) = µ′ ∈Wn−3 ⊂Wn−2.

In either case, λn−1 − µ ∈ Wn−2. Therefore, λn − (λn−1 − µ) ∈ λn −Wn−2 ⊂ Wn−1 and so
(λn−µ)−αn = λn+1− (λn− (λn−1−µ)) ∈ λn+1−Wn−1 ⊂Wn. Thus we have that Wn is closed
under the αn-weight string. This shows that Wn is closed under α1, . . . , αn-weight strings.

Finally, consider −Wn = −Wn−1 ∪ (−λn+1 +Wn−1)

= −Wn−2 ∪ (−λn +Wn−2) ∪ (−λn+1 +Wn−2) ∪ (−λn+1 + λn −Wn−2) .

As with Wn, we have that −Wn is closed under α1, . . . , αn−1-weight strings, so we only need
to check αn’s string. The only weights in which λn appears with a positive coefficient are in
−λn+1 +λn−Wn−2. As before, since only λ1, . . . , λn−1 are involved in the weights in Wn−2, the
coefficient of λn is 1 and we only need to down by 1 copy of αn. Let µ ∈Wn−2. Then,

(−λn+1 + λn − µ)− αn = (−λn+1 + λn − µ)− (−λn−1 + 2λn − λn+1) = −λn + λn−1 − µ.

But we already know from the above argument that λn−1 − µ ∈Wn−2. Therefore,

(−λn+1 + λn − µ)− αn = −λn + (λn−1 − µ) ∈ −λn +Wn−2 ⊂ −Wn.

So −Wn is closed under α1, . . . , αn-weight strings.
Therefore, by induction, we have that ±Wn are the set of weights for Mn for n ≥ 1. �

Corollary 2.2. Setting λn+1 = 0, we have Wn = −Wn. Also, dim(L(Bn, λ1)) = 2n.

Proof: We have already remarked that setting λn+1 = 0 in ±Wn yields the weights “without
ghosts” for L(Bn, λ1). But notice that

Wn|λn+1=0 = Wn−1 ∪ (0−Wn−1) = −Wn−1 ∪ (−0 +Wn−1) = −Wn|λn+1=0 .

For the second statement, notice that |W1| = 21. Assume |Wn−1| = 2n−1 then |Wn| =
|Wn−1|+ |λn+1−Wn−1| since the union of Wn−1 and λn+1−Wn−1 is disjoint. Next, notice that
|Wn−1| = |λn+1 −Wn−1|. Therefore, |Wn| = |Wn−1| + |Wn−1| = 2n−1 + 2n−1 = 2n. So by in-
duction L(Bn, λ1) has 2n weights. But this is a minuscule module so that is also its dimension. �

8

Corollary 2.3. If µ =
n+1∑
j=1

cjλj ∈ Wn then cj ∈ {−1, 0, 1}. Thus this also holds for Wn

∣∣∣
λn+1=0

(the weights of L (Bn, λ1)).

Proof: This is true for W1 = {λ1,−λ1 + λ2}. Notice that the elements of Wn−1 do not involve
λn+1, so if the statement is true about Wn−1, it must also follow for Wn = Wn−1∪(λn+1 −Wn−1).
�

Corollary 2.4. L (Bn, λ1) ∼= L (Bn−1, λ1)⊕ L (Bn−1, λ1) as Bn−1-modules.

Proof: We have that Wn

∣∣∣
λn+1=0

= Wn−1 ∪ −Wn−1 is the set of weights for the Bn-module

L(Bn, λ1). Also, −Wn−1

∣∣∣
λn=0

= Wn−1

∣∣∣
λn=0

is the set of weights for theBn−1-module L(Bn−1, λ1).

Thus there exists Λ1 ∈ Wn−1 and Λ2 ∈ −Wn−1 such that Λ1

∣∣∣
λn=0

= Λ2

∣∣∣
λn=0

= λ1. Let vi be

a (non-zero) weight vector with weight Λi (i = 1, 2). Since v1 and v2 have weight λ1 (with
respect to Bn−1), they each generate a copy of L(Bn−1, λ1), say U1 and U2. The weights of
U1 (generated by v1) exhaust Wn−1 and those of U2 (generated by v2) exhaust −Wn−1. This
shows that L(Bn, λ1) contains a submodule U1⊕U2 where Wi

∼= L(Bn−1, λ1) (the sum is direct
because the sets of weights Wn−1 and −Wn−1 are disjoint). Finally, U1 ⊕ U2 = L(Bn, λ1) since
all weight spaces are 1-dimensional and Wn, −Wn exhaust all of the weights. �

3 Weyl Group Action as Permutations

In this we turn our attention to the action of the Weyl group W(Bn) on the weights of the
minuscule module L(Bn, λ1). Our goal is to get an explicit formula for the action of the group
on these weights.

Observe that if the coefficient of λk in λ is 1, then σk(λ) = λ − αk. If the coefficent is −1,
σk(λ) = λ + αk. Finally, if the coefficient is 0, σk(λ) = λ. Therefore, since the coefficients of
the fundamental weights are −1, 0, 1 in the weights of the minuscule modules, applying σk is the
same as traveling up or down the αk-weight string. Therefore, the simple reflections permute
Wn and −Wn even with “ghosts” (i.e. even without setting λn+1 = 0).

Assume n ≥ 2 and let 2n = 4` and 1 ≤ j ≤ 2`. Define τn ∈ S2` (permutations of 2`) as
follows: τn(j) = 2` − j + 1. Notice that τn ◦ τn(j) = 2` − (2` − j + 1) + 1 = j so τ−1n = τn.
Expressing τn as a product of disjoint cycles (in fact, disjoint transpositions) we have

τn = (1, 2`)(2, 2`− 1) . . . (`, `− 1).

We can (and do wish to) treat τn as a permutation in Sk for any k ≥ 2` by letting τn(x) = x
for all x > 2`.

We know from Theorem 2.1 that

Wn = Wn−1 ∪ (λn+1 −Wn−1) .

Let W0 = {λ1} = {µ1} and then define λ2−W0 = {λ2−λ1} = {µ2}. Continuing in this fashion,
suppose Wn−1 = {µ1, . . . , µ2`}. Then let λn+1 −Wn−1 = {µ2`+1, . . . , µ4`} by setting

µ2`+j = λn+1 − µ4`−j+1 = λn+1 − µτn+1(j) = λn+1 − µ2`+τn(j).

9

So Wn−1 is the first half of Wn. To get the second half of Wn, we negate Wn−1, add λn+1, and
reverse its order. In particular,

µ1 = λ1, µ2 = λ2−µ1 = λ2−λ1, µ3 = λ3−µ2 = λ3−λ2 +λ1, µ4 = λ3−µ1 = λ3−λ1, . . . ,

µ2`+1 = λn+1 − µ2`, µ2`+2 = λn+1 − µ2`−1, µ4` = λn+1 − µ1,

From this point on we will freely move back and forth treating simple reflections σj as both
permutations of weights and permutations of their indices – that is – we have σj(µa) = µb if
and only if σj(a) = b.

Recall that σi(λj) = λj−δijαi and that because σ is linear σi(−λj) = −σ(λj) = −λj +δijαi.
So, in W1 we have,

σ1(µ1) = σ1(λ1) = λ1 − (2λ1 − λ2) = −λ1 + λ2 = µ2,

σ1(µ2) = σ1(−λ1 + λ2) = σ1(−λ1) + σ1(λ2) = −λ1 + (2λ1 − λ2) + λ2 = λ1 = µ1.

Therefore σ1 is a permutation transposing µ1 and µ2. By identifying µi with its index i, we
get that σ1 is precisely the transposition σ1 = (12) when acting on W1.

Let us see what happens when we move to rank 2. In W2 we have,

σ1(µ1) = σ1(λ1) = λ1 − (2λ1 − λ2) = −λ1 + λ2 = µ2,

σ1(µ2) = σ1(−λ1 + λ2) = σ1(−λ1) + σ1(λ2) = −λ1 + (2λ1 − λ2) + λ2 = λ1 = µ1,

σ1(µ3) = σ1(λ1−λ2+λ3) = σ1(λ1)+σ1(−λ2)+σ1(λ3) = λ1−(2λ1−λ2)−λ2+λ3 = −λ1+λ3 = µ4,

σ1(µ4) = σ1(−λ1 + λ3) = σ1(−λ1) + σ1(λ3) = −λ1 + (2λ1 − λ2) + λ3 = λ1 − λ2 + λ3 = µ3,

σ2(µ1) = σ2(λ1) = λ1 = µ1,

σ2(µ2) = σ2(−λ1 + λ2) = −λ1 + λ2 − (−2λ1 + 2λ2 − λ3) = λ1 − λ2 + λ3 = µ3,

σ2(µ3) = σ2(λ1 − λ2 + λ3) = λ1 − λ2 + (−2λ1 + 2λ2 − λ3) + λ3 = −λ1 + λ2 = µ2,

σ2(µ4) = σ2(−λ1 + λ3) = −λ1 + λ3 = µ4.

Thus, suppressing one cycles we see that σ1 = (12)(34) and σ2 = (23) in W2.
If we continue this sort of calculation for σ1, σ2, and σ3 acting on W3 we would find that

σ1 = (12)(34)(56)(78), σ2 = (23)(67), σ3 = (35)(46).

Now that a pattern is becoming clear let us investigate this action in general. To continue,
we will need to make use of the following lemma:

Lemma 3.1. Acting on Wn, we have τnσjτn = σj for j = 1, 2, . . . , n− 1.

Proof: First, recall that Wn = Wn−2 ∪ (λn −Wn−2) ∪ (λn+1 −Wn−1).
Let µ ∈ λn+1−Wn−1. Since σj (j < n) permutes −Wn−1, it permutes λn+1−Wn−1 (σj fixes

λn+1 and σj is linear). Thus both µ and σj(µ) are equal to µk’s with k > 2`. Because of this τn
has no effect on either µ or σj(µ). Thus τn(σj(τn(µ))) = σj(µ).

10

Next, let µ ∈ Wn−2, so µ = µk for some 1 ≤ k ≤ `. Then τn(µk) = µ2`−k+1 = λn − µk (by
the definition of µ2`−k+1). Likewise, if µ ∈ λn −Wn−2, then µ = λn − µk for some 1 ≤ k ≤ `
and so µ = µ2`−k+1. Therefore,

τn(µ) = τn(µ2`−k+1) = µ2`−(2`−k+1)+1 = µk = λn − (λn − µk) = λn − µ.

So for all 1 ≤ k ≤ 2`, τn(µk) = λn − µk and τn(λn − µk) = µk since τ−1n = τn. Therefore,
τn(σj(τn(µk))) = τn(σj(λn − µk)) = τn(λn − σj(µk)) = σj(µk).

So for all µ, we have τn(σj(τn(µ))) = σj(µ). �

As an aside, let us draw attention to the useful fact:

µ2`−k+1 = µτn(k) = λn − µk

for 1 ≤ k ≤ 2`.
We can now begin the task of determining the action of each simple reflection. First, consider

1 ≤ k < n. Suppose we have already determined σk on Wn−1 = {µ1, . . . , µ2`}. We need to
determine how σk acts on λn+1−Wn−1. Since k 6= n+1, σk(λn+1) = λn+1. Thus for 1 ≤ j ≤ 2`,

σk(µ2`+j) = σk(λn+1 − µ4`−(2`+j)+1) = λn+1 − σk(µ2`−j+1) = λn+1 − σk(µτn(j))
= λn+1 − µσk(τn(j)) = µ4`−σk(τn(j))+1 = µ2`+τn(σk(τn(j))).

Therefore by Lemma 3.1, σk(µ2`+j) = µ2`+σk(j). Summarizing this discussion we present the
following lemma.

Lemma 3.2. Given the action of σk, k = 1, . . . , n− 1 on Wn−1, we have for any 1 ≤ j ≤ 2n−1,

σk(2
n−1 + j) = 2n−1 + σk(j).

So if σk contains the transposition (a, b) when acting on Wk, then σk must contain the transpo-
sitions (p2k + a, p2k + b) for p = 0, . . . , 2n−k − 1 when acting on Wn.

This leaves us to determine σn’s action on Wn. We have already determined σ1 acting on
W1 and σ2 acting on W2. Therefore, let us assume n ≥ 3.

Wn = Wn−1 ∪ (λn+1 −Wn−1)

= Wn−2 ∪ (λn −Wn−2) ∪ (λn+1 − λn +Wn−2) ∪ (λn+1 −Wn−2)

= {µ1, . . . , µ`} ∪ {µ`+1, . . . , µ2`} ∪ {µ2`+1, . . . , µ3`} ∪ {µ3`+1, . . . , µ4`}.

We consider each of these 4 parts of Wn separately. Note that σn(λn) = λn − αn = λn −
(−λn−1+2λn−λn+1) = λn−1−λn+λn+1 (we are assuming n ≥ 3 so αn = −λn−1+2λn−λn+1).

Case 1: Let 1 ≤ j ≤ `, then µj ∈Wn−2. We know that Wn−2 does not involve λn so σn(µj) = µj .

Case 2: Let ` + 1 ≤ j ≤ 2`, then µj = λn − µτn(j) where µτn(j) ∈ Wn−2. Therefore, σn(µj) =
σn(λn) − σn(µτn(j)) = (λn−1 − λn + λn+1) − µτn(j) = λn+1 − (λn − (λn−1 − µτn(j))) = λn+1 −
(λn − µτn−1(τn(j))) = λn+1 − µτn(τn−1(τn(j))) = µτn+1(τn(τn−1(τn(j)))).

τn+1(τn(τn−1(τn(j)))) = τn+1(τn(τn−1(2` − j + 1))) = τn+1(τn(` − (2` − j + 1) + 1)) =
τn+1(τn(j − `)) = τn+1(2`− (j − `) + 1) = τn+1(3`− j + 1) = 4`− (3`− j + 1) + 1 = j + `.

11

Therefore, σn(µj) = µj+`.

Case 3: Since σn is its own inverse, we can conclude from Case 2 that σn(µj) = µj−` for
2` + 1 ≤ j ≤ 3`. Alternatively, we could just do the direct computation. Let 2` + 1 ≤ j ≤ 3`,
then µj = λn+1−µτn+1(j) = λn+1− (λn−µτn(τn+1(j))). Therefore, σn(µj) = σn(λn+1)−σn(λn)+
σn(µτn(τn+1(j))) = λn+1 − (λn−1 − λn + λn+1) + µτn(τn+1(j)) = λn − (λn−1 − µτn(τn+1(j))) =
λn − µτn−1(τn(τn+1(j))) = µτn(τn−1(τn(τn+1(j)))).

τn(τn−1(τn(τn+1(j)))) = τn(τn−1(τn(4`−j+1))) = τn(τn−1(2`−(4`−j+1)+1)) = τn(τn−1(j−
2`)) = τn(`− (j − 2`) + 1) = τn(3`− j + 1) = 2`− (3`− j + 1) + 1 = j − `.

Therefore, σn(µj) = µj−`.

Case 4: Let 3` + 1 ≤ j ≤ 4`, then µj = λn+1 − µτn+1(j) where µτn+1(j) ∈ Wn−2. Therefore,
σn(µτn+1(j)) = µτn+1(j) so σn(µj) = σn(λn+1 − µτn+1(j)) = σ(λn+1) − σn(µτn+1(j)) = λn+1 −
µτn+1(j) = µτn+1(τn+1(j)) = µj . So just as in Case 1, σn(µj) = µj .

We have shown the following for 1 ≤ k ≤ ` = 2n−2, σn(2n−2 + k) = σn(` + k) = 2` + k =
2n−1 + k.

Lemma 3.3. For n ≥ 3, as a permutation on Wn we have σn =
2n−2∏
k=1

(2n−2 + k, 2n−1 + k).

Therefore, putting together our base case calculations, lemma 3.2, and lemma 3.3 we get the
following theorem.

Theorem 3.4. The simple reflections of the Weyl group W(Bn) act as follows on Wn (the
weights of the minuscule representation L(Bn, λ1)):

σ1 =
2n−1∏
k=1

(2k− 1, 2k) and σj =
2(n−j)−1∏
p=0

2j−2∏
k=1

(p2j + 2j−2 + k, p2j + 2j−1 + k), 2 ≤ j ≤ n.

4 Seeing irreducibility from cycle structures

The original motivation for this project was to extend a result found in [CMS]. In that paper
the authors present a constructive method for solving the inverse problem in differential Galois
theory. As a part of their construction the authors required an irreducible representation for
each finite dimensional simple Lie algebra. But to make everything work, they also required
that the irreducibility of this representation be visible from examining the cycle structures of
the Weyl group elements acting as permutations on the weights of this representation.

This last requirement is quite harsh. To be able to conclude a representation is irreducible
from cycle structures, we would first need to know that all of the weight spaces were one
dimensional and we would at the very least need all of the weights to lie in a single orbit.
Therefore, the only representations that could possibly work are the minuscule representations.

In [CMS] the authors were able to show that each of algebra of type An (n ≥ 1), Cn (n ≥ 3),
Dn (n ≥ 4), E6, and E7 had such a minuscule representation. Since E8, F4, and G2 have no
minuscule representations at all, they must be discarded. This left type Bn as the final case to
be considered. Using calculations performed in Maple (a computer algebra system), the authors
were able to show that B2, B3, B5, and B7 have a conforming minuscule representation. They

12

also showed that B4’s irreducibility cannot be seen from cycle structures alone. The fate of the
other type Bn cases was left open.

Using theorem 3.4 and GAP (“Groups, Algorithms, and Programming” – mathematical
software) [GAP], for n ≤ 12, we were able to find complete lists of cycle structures for the
elements in W(Bn) viewed as permutations of weights of the minuscule module. These lists
allowed us to conclude that the cycle structures for types Bn (n = 1, 2, 3, 5, and 7) only allow
for invariant subspaces of dimension 0 and 2n (thus the corresponding representation must be
irreducible). The same could not be concluded for other values of n. Below we elaborate on our
method for determining irreducibility from cycle structures by examining the cycle structures
of Bn (n = 1, 2, 3, 4, and 5).

Note that, viewed as permutations, W(B1) = {(1), (12)}. For our purposes we describe the
cycle structures in this group by 1 + 1 for the identity (two 1-cycles) and 2 for the transpo-
sition (12) (a single 2-cycle). This identification allows us to read off the possible dimensions
of invariant subspaces allowed by each cycle structure. If we can find a cycle structure (or a
collection of cycle structures) that only allows for dimensions of 0 and 2n we know we can con-
clude irreducibility from the cycle structures alone. In this case, the 2 cycle structure guarantees
the irreducibility of our minuscule representation. We will understand why after the following
examples.

When n = 2, we have W(B2) =
〈
(12)(34), (23)

〉
with cycle structures

1 + 1 + 1 + 1 = 1 + 1 + 2 = 2 + 2 = 4.

So every element in W(B2) viewed as a permutation is of the form: four 1-cycles, two 1-cycles
and a 2-cycle, two 2-cycles or a 4-cycle. Any partial sum of a type of cycle structure is a
possible dimension for an invariant subspace of our minuscule representation allowed by that
cycle structure. So the cycle structure 1 + 1 + 2 allows for possible dimensions of 0, 1, 2 and
4. We also have that the cycle structure 4 allows for dimensions of only 0 and 4. Hence, we
conclude that any invariant subspace of our minuscule representation must be of dimension 0 or
4 and that our minuscule representation is in fact irreducible.

Next W(B3) =
〈
(12)(34)(56)(78), (23)(67), (35)(46)

〉
and has cycle structures

1 + 1 + · · ·+ 1 = 1 + 1 + 1 + 1 + 2 + 2 = 1 + 1 + 3 + 3

= 2 + 2 + 2 + 2 = 2 + 6 = 4 + 4.

In this case there is no structure of the form 23 = 8 to guarantee irreducibility. Instead we must
consider the structures 2 + 6 and 4 + 4 simultaneously: 2 + 6 allows for the possible dimensions
0, 2, 6 and 8 while 4 + 4 allows for 0, 4 and 8. Together, they allow only the dimensions 0 and 8.
Hence, irreducibility follows.

n = 4 is the first case in which this method fails.

W(B4) =
〈
(12)(34) · · · (15, 16), (23)(67)(10, 11)(14, 15),

(35)(46)(11, 13)(12, 14), (59)(6, 10)(7, 11)(8, 12)
〉

13

with cycle structures

1 + 1 + · · ·+ 1 = 1 + 1 + · · ·+ 1 + 2 + 2 + 2 + 2

= 1 + 1 + 2 + 4 + 4 + 4 = 1 + 1 + 1 + 1 + 3 + 3 + 3 + 3

= 2 + 2 + · · ·+ 2 = 1 + 1 + 1 + 1 + 2 + 2 + · · ·+ 2

= 2 + 2 + 6 + 6 = 4 + 4 + 4 + 4 = 8 + 8.

Each of these cycle structures allows for an invariant subspace of dimension 8. So even though
B4’s minuscule module is irreducible, cycle structures alone will not reveal this to us.

For B5, we have that W(B5) has cycles structures of the form 8+8+8+8 and 2+10+10+10.
8+8+8+8 only allows for submodules of dimensions 0, 8, 16, 24, and 32 whereas 2+10+10+10
only allows for submodules of dimensions 0, 2, 10, 12, 20, 22, 30, and 32. Thus, only 0 and 32
are allowed, so irreducibility follows.

Below is a table summing up the results for ranks 6 ≤ n ≤ 12. We see that only the cycle
structures for B7 imply the irreducibility of it’s minuscule representation.

Rank Invariant subspace dimensions allowed by cycle structures

6 0, 24, 40, 64
7 0, 128
8 0, 16, 32, 112, 128, 144, 224, 240, 256
9 0, 144, 224, 288, 368, 512
10 0, 64, 144, 224, 240, 320, 400, 464, 480, 544, 560, 624, 704, 784, 800, 880, 960, 1024
11 0, 288, 464, 528, 640, 704, 1344, 1408, 1520, 1584, 1760, 2048
12 0, 48, 112, 176, 224, 288, 352, 400, 464, 528, 576, 640, 704, 752, 816, 880, 928, 992,

1056, 1104, 1168, 1232, 1280, 1344, 1408, 1456, 1520, 1584, 1632, 1696, 1760, 1808, 1872,
1936, 1984, 2048, 2112, 2160, 2224, 2288, 2336, 2400, 2464, 2512, 2576, 2640, 2688, 2752,
2816, 2864, 2928, 2992, 3040, 3104, 3168, 3216, 3280, 3344, 3392, 3456, 3520, 3568, 3632,
3696, 3744, 3808, 3872, 3920, 3984, 4048, 4096

We were not able to get GAP to complete calculations for any higher rank cases. The
problem is that Weyl groups grow very fast as rank is increased. In fact W(Bn) is isomorphic to
a semi-direct product of Sn and (Z2)

n so that |W(Bn)| = 2n ·n!. Even at rank 12 we have a group
of order 212 · 12! acting on a set of 212 = 4096 weights! However, by randomly sampling larger
groups in ranks of up to 23, we obtained strong evidence that the number of allowed invariant
subspace dimensions blows up as rank is increased. We conjecture that the irreducibility of the
minuscule representation cannot be seen from cycle structures alone after rank 7. We found
this quite surprising given the nature of the minuscule representations for the other types of
algebras.

5 Appendix: GAP Code

This code was run in GAP version 4.4.12 [GAP] on a Mac (OS X Version 10.7.4) with 2.5 GHz
Intel Core i5 processor and 4 GB of RAM. The generators created by “BminGenerators” are

14

exactly those found in theorem 3.4.

#

This function returns a list of n permutations which represent the simple

reflections of the Weyl group of type B rank n acting on the weights of

its minuscule representation. These generate the permutation representation

of the Weyl group of type B rank n.

#

s[i] corresponds to the simple reflection accross the hyperplane determined

by the simple root alpha[i]. Since reflections are involutions (order 2),

each permutation is the product of disjoint transpositions.

#

BminGenerators := function(n)

local s,i,tmp,j,k;

s := ListWithIdenticalEntries(n,[]);;

for i in [1..n-1] do

tmp := ListWithIdenticalEntries(2^n,0);

for j in [1..2^n] do

tmp[j] := j;

od;

for j in [1..2^(n-1-i)] do

for k in [1..2^(i-1)] do

tmp[2^(i-1)+1+(j-1)*2^(i+1)+(k-1)] := 2^(i-1)+1+(j-1)*2^(i+1)+(k-1)+2^(i-1);

tmp[2^(i-1)+1+(j-1)*2^(i+1)+(k-1)+2^(i-1)] := 2^(i-1)+1+(j-1)*2^(i+1)+(k-1);

od;

od;

s[n-i] := PermList(tmp);

od;;

tmp := ListWithIdenticalEntries(2^n,0);;

for j in [1..2^(n-1)] do

tmp[2*j-1] := 2*j;

tmp[2*j] := 2*j-1;

od;;

s[n] := PermList(tmp);;

return s;

end;;

#

Given a permutation s and rank n, this function determines how many of each

type of cycle appears in s. Since we want to keep track of 1-cycles (which

are normally suppressed), we need the rank to find out how many integers in

15

the list 1..2^n are unmoved (i.e. the number of 1-cycles).

#

This function returns a list of pairs of the form "[k,m]" which indicates

that the permutation has m k-cycles.

#

For example: s=(1,2,3)(4,5,6) and n=4 means s=(1,2,3)(4,5,6)(7)(8)...(16)

so the function returns [[1,16],[3,2]] (16 1-cycles and 2 3-cycles).

#

CycleType := function(s,n)

local tmp,lst,i,z;

CycleStructurePerm returns a list of the number of cycles of each type

starting with transpositions.

tmp := CycleStructurePerm(s);

lst = [0,tmp]

The "0" will be replaced by the number of 1-cycles.

lst := [0];;

Append(lst,tmp);;

This replaces empty spots in lst with 0’s.

z := Zero([1..Length(lst)]);

lst := lst+z;

tmp := 0;;

for i in [1..Length(lst)] do

i*lst[i] is the number of integers moved by the i-cycles.

tmp := tmp+i*lst[i];

od;

tmp is the total number of integers in 1..2^n moved by non-trivial cycles,

so 2^n-tmp is the number of 1-cycles (trivial cycles).

lst[1] := 2^n-tmp;;

This converts our list of numbers of k-cycles to a more convenient format.

If list[k]=m > 0 then we add "[k,m]" to our list signifying that there

are a total of m k-cycles. So [3,5,0,7] turns into [[1,3],[2,5],[4,7]].

tmp := [];

for i in [1..Length(lst)] do

if not lst[i] = 0 then

Append(tmp,[[i,lst[i]]]);

fi;

od;;

lst := tmp;

return lst;

16

end;;

#

This function returns the distinct cycle types that appear in the minuscule

permutation representation of the Weyl group of type B rank n.

#

For example: When n=2, we get [[[1,2],[2,1]], [[1,4]], [[2,2]], [[4,1]]].

This means that the permutation representation contains permutations of the

form... (A) 2 1-cycles and a transposition, (B) 4 1-cycles (the identity),

(C) 2 tranpositions, and (D) 1 4-cycle.

#

BminCycleTypes := function(n)

local ccl,csl,cycTypes,k;

This the a complete list of the conjugacy classes of our perm. rep.

ccl := ConjugacyClasses(Group(BminGenerators(n)));;

csl is a list of representatives -- one from each conjugacy class.

csl := List(ccl, c -> Representative(c));;

We compute the cycle type of each representative in csl and add it to our

list of cycle types: cycTypes.

cycTypes := [];;

for k in [1..Length(csl)] do

Append(cycTypes,[CycleType(csl[k],n)]);

od;

Elements of two distinct conjugacy classes can share the same cycle type.

Thus we apply SSortedList to remove redundancies in our list.

return SSortedList(cycTypes);

end;;

#

We know that the Weyl group acts transitively on the set of weights of a

minuscule representation. So there are no non-empty proper subsets of

weights left invariant under the group’s action. In some cases, this is

visible from the cycle structures (of the Weyl group elements realized

as permutations) alone.

#

This function returns a list of sizes of invariant subsets of weights

allowed by the cycle structures of the perm. rep. of the Weyl group of

type B rank n acting on the weights of its minuscule representation.

#

17

BminInvSubspDim := function(n)

local cycTypes,subsp,m,elt,myList,i,indicesOfInterest,j,k,tmp,subspTMP;

Get the cycle types for the perm. rep.

cycTypes := BminCycleTypes(n);

no elements (yet) ==> all subset sizes are allowed.

subsp := [0..2^n];;

for m in [1..Length(cycTypes)] do

grab a cycle type.

elt := cycTypes[m];

myList is a list of 2^n+1 copies of "false". myList[i+1] corresponds

to an allowed invariant subset of size i.

myList := ListWithIdenticalEntries(2^n+1,false);;

the empty set is always allowed.

myList[1] := true;;

for i in [1..Length(elt)] do # i-th type of cycle in elt

look through myList and grab only the indices y for which myList[y] is true.

indicesOfInterest := Filtered([1..Length(myList)], y -> myList[y]);

for j in indicesOfInterest do # all j’s where myList[j]=true

If elt[i]=[x,y], then elt has y x-cycles, so k goes from 1 to y which

happens to be the number of x-cycles.

for k in [1..elt[i][2]] do

Suppose elt[i]=[x,y]. We know myList[j]=true (an invariant

subset of size j is allowed by elt). If we let in anything from

an x-cycle, we must allow all x elements from that cycle. So

if j is allowed, then so is j+x (but nothing between j and j+x).

Looping through all y x-cycles, we get j,j+x,j+2x,...,j+yx are all

allowed.

myList[j+k*elt[i][1]] := true;

od;

od;

od;

tmp is a list of indices corresponding to invariant subset sizes allowed

by the permutation elt.

tmp := Filtered([1..Length(myList)], y -> myList[y]);;

since the y-th element corresponded to a set of size y-1 we need to decrease

18

everything in tmp by 1.

tmp := List(tmp, p -> p-1);

subspTMP is the list of common subset sizes allowed by previous elements.

subspTMP := subsp;

subsp := [];

for i in tmp do # size "i" is allowed by elt (it appears in tmp)

If size "i" was allowed by all previous elements, we should add it

to our list of allowed sizes.

if i in subspTMP then

Add(subsp,i);

fi;

od;

od;;

return subsp; # The listed sizes were allowed by all of the cycle types in cycTypes.

end;;

#

This returns in the order of the Weyl group of type B rank n.

#

BWeylSize := function(n)

return(Size(Group(BminGenerators(n))));

end;;

#

This returns a permutation representing the Coxeter element of the Weyl group

of type B rank n. This is just the product of all of the simple reflections:

s[1]s[2]...s[n].

#

BminCoxeter := function(n)

local s,coxeter,i;

s := BminGenerators(n);

coxeter := (1);;

for i in [1..n] do

coxeter := coxeter*s[i];

od;;

return coxeter;

19

end;;

#

Let’s see what dimensions are allowed for the first 12 ranks...

#

for n in [1..12] do

Print("B",n,": ",BminInvSubspDim(n),"\n");

od;

References

[B] N. Bourbaki, Lie Groups and Lie Algebras (Springer, 2005), Chaps. 79.

[C] Roger Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced
Mathematics, vol. 96, Cambridge University Press, Cambridge, 2005.

[CMS] Cook, William J.; Mitschi, Claude; Singer, Michael F. On the constructive inverse
problem in differential Galois theory. Comm. Algebra 33 (2005) 3639–3665.

[EW] Erdmann, K., Wildon, M. J. (2006). Introduction to Lie algebras, Springer Undergrad-
uate Mathematics Series, Springer-Verlag London Ltd., London.

[GAP] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4; 2014.
(http://www.gap-system.org).

[G] R. M. Green, Combinatorics of minuscule representations, Cambridge Tracts in Math-
ematics, vol. 199, Cambridge University Press, Cambridge, 2013.

[H] J. Humphreys, Introduction to Lie Algebras and Representation Theory (Springer-
Verlag, 1972).

20

	Introduction
	Simple Lie algebras
	The Weyl group and irreducible modules
	Minuscule modules
	sl2-representation theory
	Simple Lie algebras of type Bn

	The weights of the minuscule representation of type Bn
	Weyl Group Action as Permutations
	Seeing irreducibility from cycle structures
	Appendix: GAP Code

