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ABSTRACT

Reverse mathematics is a rich framework for benchmarking the relative proof

theoretic strength of classical mathematics (that fragment of mathematics which is

sufficiently realized in a countable setting.) This thesis continues the reverse mathe-

matics program by classifying several previously unstudied theorems of combinatorics

in terms of the big five subsystems.

We also analyze theorems from the reverse mathematics zoo using the relatively

novel computability-theoretic reducibilities associated with strong reductions and

Weihrauch complexity. In the course of this work we will establish several examples

of reverse mathematically equivalent principles which are distinguished under some

computability-theoretic reduction.

We take principles from infinitary combinatorics as our object of study. Chapters

2 and 4 investigate theorems regarding infinite graphs and hypergraphs, while chapter

3 investigates theorems about infinite partially ordered sets.
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Chapter 1

Introduction: analyzing
mathematical principles in
mathematical logic

This thesis is a contribution to the central practice in mathematical logic of analyzing

classical mathematical principles in terms of their proof-, set-, and computability-

theoretic complexity in order to discern underlying connections between disparate

areas of mathematics as well as the nature of mathematical proof. The principles

studied herein arise in infinitary combinatorics.

We utilize two robust frameworks throughout to conduct our analysis. The first

is reverse mathematics, a proof-theoretic program in which classical theorems of

mathematics are bench-marked against subsystems of second-order arithmetic linearly

ordered by set-comprehension. The second framework, which we refer to as Weihrauch

analysis, is a collection of computability-theoretic reductions between mathematical

principles formulated as formal problems.

1
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In chapter 2, we use reverse mathematics to benchmark several principles related

to matchings on a bipartite graph. In chapter 3, we distinguish reverse-mathematically

equivalent principles regarding infinite partial orders via the computability-theoretic

reductions from Weihrauch analysis. In chapter 4, we report on preliminary results

regarding the reverse-mathematical and Weihrauch complexity of principles discussing

unique colorability in hypergraphs.

As the techniques used in this work can all be motivated from a computability-

theoretic perspective, we begin with an introduction to the fundamentals of com-

putability theory before discussing the specifics of our chosen frameworks.

1.1 Computability Theory

Computability theory arose in the early 20th century to give a rigorous mathematical

formulation of the notion of algorithm or computational procedure. There are many

equivalent ways to define a formal computer which carries out a prescribed algorithm

but it is widely agreed that Turing’s formulation of what are now known as Turing

machines [25] yields the essential definition of an algorithm or computational proce-

dure. We recommend Weber [26] for a friendly introduction to the basic notions of

computability theory and Soare [23] for an in-depth discussion.

We call a function f : N→ N computable if there is a Turing machine which given

input n, outputs f(n). If f(n) is defined for all n ∈ N, we say f is total, else we call

f partial. As is standard, we fix an effective enumeration of all partial computable

functions Φ0,Φ1, . . .Φe, . . . and assume that given the triple (e, n, s), we can run

Turing machine e on input n for s steps via a universal Turing machine. We abbreviate
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this computation with the symbol Φe(n)[s]. If Φe(n)[s] is defined, we write Φe(n)[s] ↓

and say Φe halts on input n in s steps. Otherwise we write Φe(n)[s] ↑. We call the

least such s for which Φe(n)[s] ↓ the use of Φe(n) and denote it by ϕe(n) = s. If no

such s exists, we write Φe(n) ↑ and say Φe diverges on input n. The statement that

such an s exists is abbreviated by Φe(n) ↓.

We call a set A ⊆ N computable if its characteristic function χA is computable.

That is, there is some e such that Φe = χA. Note χA ∈ 2N. We freely conflate a set,

its characteristic function, and the binary sequence it defines.

We assume without loss of generality that each of Φ0,Φ1, . . . are computed by

oracle Turing machines with the empty set ∅ used as an oracle. Then for any set X, we

have the partial computable functions relative to X, ΦX
0 ,Φ

X
1 , . . . and define ΦX

e (n)[s] ↓,

ϕXe (n) = s and ΦX
e (n)[s] ↑ similarly. We say A is computable in, or computable relative

to, X if there is an index e such that ΦX
e = χA. We write A ≤T X in this case and say

A is Turing reducible to X. If in addition X ≤T A, we write A ≡T X and say A is

Turing equivalent to X. It is easy to see that ≡T is an equivalence relation and that ≤T

forms an upper semi-lattice on the equivalence classes of ≡T . The least upper-bound

under ≤T of A and X is the join A⊕X = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ X}.

If Φe is a total function and the range of Φ is contained in {0, 1}, it is natural to

regard Φe as a functional mapping ‘sets’ X in 2ω to other sets Y via χY = ΦX
e .

The canonical example of set which is not computable is the halting set

∅′ = {e : ∃sΦe(e)[s] ↓}.

To show ∅′ is not computable, we use a diagonalization argument : we show that no

partial computable function Φe can define the set in question. These arguments will
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be crucial in Chapter 3.

Example 1.1.1. The set ∅′ is not computable.

Proof. Assume by way of contradiction that there is an index e such that Φe = χ∅′ .

Define a partial computable function Ψ by

Ψ(n) =


0 if Φe(n) = 0

↑ if Φe(n) = 1.

Note Ψ is partial computable and thus there is an index e0 such that Φe0 = Ψ. Then

Φe0(e0) ↓ if and only if e0 6∈ ∅′, a contradiction.

The use of the term diagonalization to describe this argument arises from the

definition of ∅′. In a general construction, we say we have diagonalized Φe, if we have

avoided it defining the object in question.

We briefly mention that we may effectively code finite strings σ ∈ N<N by natural

numbers. For instance, we may code σ by the number 2σ(0)+13σ(1)+1 · · · pσ(n)+1
n where

pn is the nth prime and σ is a string of length n+ 1. Similarly, we may code finite

sets as natural numbers and infinite objects, e.g., n-ary functions, as sets of natural

numbers. In what follows, the specifics of coding will not matter outside of it being

effective. For details on coding in computability theory see Soare [23] and for details

on coding in Reverse Mathematics, see Simpson [22]. We now freely consider n-ary

computable functions via codes for finite sequences.

We say a relation R(x0, . . . , xn) on Nn+1 is computable if there is a total com-

putable function Φe with range in {0, 1} such that Φe(x0, . . . , xn) ↓= 1 if and only if

R(x0, . . . , xn) holds. We say R is X-computable if the same is true of a computable
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function ΦX
e .

Definition 1.1.2 (The arithmetical hierarchy). 1. We say a set A is Σ0
0 (Π0

0) if it

is computable.

2. For n ≥ 1, we say A is Σ0
n if there is a computable predicate R(y, x0, . . . , xn)

such that

y ∈ A ⇐⇒ ∃x0∀x1 · · ·QxnR(y, x0, . . . , xn)

where Q is ∃ if n is even and ∀ if n is odd. Similarly, we say A is Π0
n if there is

a computable predicate R(y, x0, . . . , xn) such that

y ∈ A ⇐⇒ ∀x0∃x1 · · ·QxnR(y, x0, . . . , xn)

where Q is ∀ if n is even and ∃ if n is odd.

3. We say A is ∆0
n if A is both Σ0

n and Π0
n.

4. We say A is Σ0
n (Π0

n) in X if R is an X-computable predicate.

1.2 Reverse Mathematics

The basic idea of reverse mathematics is as follows: given a mathematical theorem

P, we seek to find axioms which are both necessary and sufficient to prove P. The

way we do this is by first establishing that P is not provable in some weak base theory

B. We then find a set-existence axiom A which when added to the weak base theory,

suffices to prove P. So we show

B +A ` P,
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which yields that A is sufficient to prove P, over B. To show that A is necessary, we

‘reverse’ the mathematical practice of proving theorems from axioms by deriving the

axiom A from the theorem P. That is, we show

B + P ` A.

This step is called a reversal and it yields that A is in fact necessary to prove P over

B.

The remarkable phenomenon within reverse mathematics is that, with only four

distinct set existence axioms, we can carry this out analysis for an immense amount

of classical mathematics over one fixed base theory. We review these big five axiom

systems and suggest Simpson [22] for an in-depth discussion of each.

The majority of reverse mathematics takes place within second-order arithmetic,

denoted Z2, which is a two-sorted formal system capable of formalizing a large portion of

classical mathematics via countable codes. As mentioned above, the encodings we use

will be unimportant save that we can effectively manipulate codes. To see a detailed

discussion of how objects are encoded in second-order arithmetic we recommend

Simpson [22] and Hirst [16].

The language L2 of second-order arithmetic is two-sorted with number variables

x, y, z, . . . intended to range over ω, and set variables X, Y, Z, . . . intended to range

over P(ω), the power-set of ω. We have the usual symbols +, · and < of first-order

arithmetic as well as the symbol ∈ for membership and constant symbols 0 and 1.

We build formulas in L2 by recursion on the atomic terms, which include all number

and set variables as well as t1 = t2, t1 + t2, t1 · t2, t1 < t2 and x ∈ X. A sentence is a

formula with no free variables.
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An L2 structure is of the form (N,S,+N , ·N , <N , 0N , 1N) where (N,+N , ·N , <N

, 0N , 1N) is a structure in the language of first-order arithmetic and S ⊆ P(N), the

power-set of N . We call N the first-order part of the structure and S the second-order

part. In any structure, ∈ is interpreted as true membership. We are now ready to

define the axiom system Z2.

Definition 1.2.1 (Second-order arithmetic). The axioms of second-order arithmetic

consist of

1. the collection PA− of axioms of a discrete ordered commutative semiring;

2. the induction scheme, consisting of all instances of

[
θ(0) ∧ ∀n(θ(n)→ θ(n+ 1))

]
→ ∀n θ(n))

where θ(n) is any formula of L2; and

3. the comprehension scheme, consisting of all instances of

∃X∀n(n ∈ X ↔ θ(n))

where θ(n) is any formula of L2 in which X does not occur freely.

The intended model for Z2 is, of course,

(ω,P(ω),+, ·, <,∈).

Any model with first-order part ω is called an ω-model. There are nonstandard models

of Z2 and its subsystems, in which the first-order part N 6= ω. To maintain generality,
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we reserve the symbol N to denote the set {x : x = x} in Z2 or any subsystem and

note that N may not be the standard natural numbers ω.

We obtain subsystems of second-order arithmetic by restricting the induction and

comprehension scheme to specific classes of formulas.

Definition 1.2.2. 1. For any L2 formula ψ, we abbreviate ∃x(x < y ∧ ψ) and

∀x(x < y → ψ) as (∃x < y)(ψ) and (∀x < y)(ψ) respectively, and call these

quantifiers bounded.

2. We say θ is a Σ0
0 (Π0

0) formula if it contains only bounded quantifiers.

3. For n ≥ 1, we say θ is a Σ0
n formula if it is equivalent to one of the form

∃x0∀x1 · · ·Qxnψ, where ψ is a Σ0
0 formula, and Q is ∃ if n is even and ∀ if n is

odd.

4. For n ≥ 1, we say θ is a Π0
n formula if it is equivalent to one of the form

∀x0∃x1 · · ·Qxnψ, where ψ is a Σ0
0 formula,and Q is ∀ if n is even and ∃ if n is

odd.

5. For n ≥ 0, we say θ is a ∆0
n formula if it is both Σ0

n and Π0
n.

6. We say θ is arithmetical if it has no set quantifiers.

7. For n ≥ 1, we say θ is a Σ1
n formula if it is equivalent to one of the form

∃X0∀X1 · · ·QXnψ, where ψ is an arithmetical formula, and Q is ∃ if n is even

and ∀ if n is odd.

8. For n ≥ 1, we say θ is a Π1
n formula if it is equivalent to one of the form

∀X0∃X1 · · ·QXnψ, where ψ is an arithmetical formula, and Q is ∀ if n is even

and ∃ if n is odd.
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9. For n ≥ 0, we say θ is a ∆1
n formula if it is both Σ1

n and Π1
n.

The similarities between these classes of formulas and the arithmetical hierarchy is

no coincidence. A subset A ⊆ ω is Σ0
n (Π0

n) if it is definable by a Σ0
n (Π0

n) formula with

no set variables, meaning there is some Σ0
n (Π0

n) formula θ(n) with no set variables

such that A = {n ∈ ω : θ(n)}. The analogous hierarchy of sets definable by Σ1
n and

Π1
n is the analytic hierarchy, but we will not need it.

The base theory RCA0 is obtained by restricting the induction scheme to Σ0
1

formulas and the comprehension scheme to ∆0
1 formulas.

Definition 1.2.3. The axiom system RCA0 consists of the collection PA− with the

induction scheme of Z2 restricted to Σ0
1 formulas and the comprehension scheme

restricted to ∆0
1 formulas.

We refer to the comprehension scheme of RCA0 as recursive comprehension. The

ω-models of RCA0 are exactly those in which the second-order part is a Turing ideal,

i.e., closed under join and Turing reducibility. Thus we consider RCA0 the fragment of

Z2 loosely corresponding to “computable mathematics.”

We next define the other four of the big five subsystems, all of which are obtained

by adding axioms to RCA0. A tree is any set of finite strings closed under prefix. We

will work exclusively with subtrees of 2<N or N<N, the set of finite strings from {0, 1}

or N respectively. We use λ to denote the empty string.

Definition 1.2.4. The axiom system WKL0 consists of the axioms of RCA0 together

with the statement of Weak Kőnig’s Lemma:

Every infinite subtree of 2<N has an infinite path.
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The statement of weak Kőnig’s lemma can be seen as the assertion that the Cantor

space 2ω is compact. Thus WKL0 is the weakest axiom system in which we may carry

out compactness arguments.

Definition 1.2.5. The axiom system ACA0 consists of the axioms of RCA0 with the

comprehension scheme restricted to arithmetical formulas.

We refer to the comprehension scheme of ACA0 as arithmetic comprehension.

Arithmetic comprehension can be recast in computability theoretic terms as the

statement that for every set X, the Turing jump X ′ = {e : ΦX
e (x) ↓} exists.

To define the next system, ATR0, we require a few preliminary formulas. Let

WO(X) and LO(X) be L2-formulas which respectively say X is a countable well-order

and X is a countable linear order. If X is any reflexive relation, let field(X) denote

the domain of the relation, that is, field(X) = {i : (i, i) ∈ X}.

Definition 1.2.6. The formula Hθ(X, Y ) says that LO(X) and

Y = {(n, j) : j ∈ field(X) ∧ θ(n, Y j)}

where

Y j = {(m, i) : i <X j ∧ (m, i) ∈ Y }.

Intuitively, Hθ says that Y is the set resulting from iterating the arithmetical

formula θ along the well-ordering X.

Definition 1.2.7. The axiom system ATR0 consists of ACA0 together with all instances

of

∀X
(
WO(X)→ ∃Y Hθ(X, Y )

)
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where θ is an arithmetical formula.

The axioms of ATR0 allow transfinite constructions to be carried out using repeated

applications of arithmetic comprehension. This is the weakest system in which a

theory of ordinals can be sufficiently developed.

The last of the big five subsystems is Π1
1-CA0 and it appends comprehension for

all Π1
1 definable sets.

Definition 1.2.8. The axiom system Π1
1-CA0 consists of ACA0 together with the

comprehension scheme restricted to Π1
1 formulas.

We refer to the comprehension scheme of Π1
1-CA0 as Π1

1 comprehension.

Each of these systems is strictly stronger than the previous, yielding the following

picture of the big five. See Simpson [22] for proofs of this fact.

RCA0 ⇐ WKL0 ⇐ ACA0 ⇐ ATR0 ⇐ Π1
1-CA0.

1.3 Problems and Reductions

When discussing computability theoretic reductions, we restrict our attention implicitly

to ω-models. That is, we work with ω and its subsets and not the more general set

N. The combinatorial principles we study all have a Π1
2-gestalt in the following way.

Consider the sentence

∀X(ϕ(X)→ ∃Y ψ(X, Y ))

where ϕ and ψ are arithmetical formulas. We think of this as a mathematical principle

P which asserts that for every object X satisfying ϕ, there is another object Y which
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relates to X according to ψ. These sorts of principles abound in mathematics: every

non-zero ring with identity contains a maximal ideal; every infinite covering of [0, 1]

with a sequence of open intervals contains a finite subcovering; every infinite subtree

of 2<N contains an infinite path. It is fruitful to call such a principle a problem which

consists of instance-solution pairs (X, Y ). Here X is an instance of P if and only if

ϕ(X) and Y is a solution to the instance X if and only if ψ(X, Y ). In this way, we

can see any ring R with identity as an instance of the problem “every non-zero ring

with identity contains a maximal ideal”. Then any maximal ideal M ⊆ R is a solution

to R. Of course, any given instance may have many solutions.

This formulation can be extended to a very general setting in which any multifunc-

tion between represented spaces is considered a problem. This is the usual approach

taken in computable analysis, but as all of our principles will naturally be formulated

with ω and its subsets, we do not require this generality. We recommend Brattka,

Gherardi and Pauly [2] for an introduction to this formulation and an overview of its

applications in computable analysis.

Given two problems P and Q we establish reductions between them as follows: we

say P is reducible to Q if given any instance XP of P, there is a way to transform it

(perhaps computably) into an instance XQ of Q, such that any solution YQ to XQ can

then be transformed into a solution YP of the original instance XP of P. There are

four specific notions of reducibility that we primarily utilize in our analysis.

Definition 1.3.1. Given two problems P and Q, we say

1. P is computably reducible to Q, written P ≤c Q, if and only if given any instance

XP of P, there is an instance XQ of Q such that XQ ≤T XP, and for any solution

YQ of XQ, there is a solution YP of XP such that YP ≤T XP ⊕ YQ.
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2. P is strongly computably reducible to Q, written P ≤sc Q, if and only if given any

instance XP of P, there is an instance XQ of Q such that XQ ≤T XP, and for

any solution YQ of XQ, there is a solution YP of XP such that YP ≤T YQ.

3. P is Weihrauch reducible to Q, written P ≤W Q, if and only if there are two

fixed Turing functionals Φ and Ψ such that, given any instance XP of P, the set

defined by ΦXP is an instance of Q, and any solution YQ of this instance has that

ΨXP⊕YQ defines a solution to XP.

4. P is strongly Weihrauch reducible to Q, written P ≤sW Q, if and only if there

are two fixed Turing functionals Φ and Ψ such that, given any instance XP of P,

the set defined by ΦXP is an instance of Q, and any solution YQ of this instance

has that ΨYQ defines a solution to XP.

Weihrauch reducibility is sometimes referred to as uniform reducibility. This is

because the reduction procedures Φ and Ψ are fixed. In a computable reduction, we

may utilize separate Turing reductions for each instance of P or each solution of the

computed instance of Q. Thus showing P 6≤W Q formally verifies that any proof of P

using Q will require non-uniform decisions to be made.

The omission of the join in strong reductions is non-trivial. Consider the simple

problems P : ∀X∃Y (Y = X) and Q : ∀X∃Y (Y = ∅). It is reasonable to think the

first problem should be reducible to any problem as we simply need record what X is

to yield a solution. But notice P is not strongly reducible to the second problem Q

because any non-computable set, say ∅′, is an instance of P. No matter what instance

of Q we compute from ∅′, the resulting solution will be ∅ and thus will be unable to

compute the solution, ∅′, of this instance of P. If the join is permitted, then we see P

is reducible to Q, as X ≤T X ⊕ Y for any set Y .
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We summarize below in the leftmost diagram the implications between these

reductions. While these are easy to show, they are in fact strict. We will see examples

of problems P and Q that witness this in Chapter 3. In the rightmost diagram, we

give a graphical representation of a strong Weihrauch reduction P ≤sW Q, where Φ

and Ψ are fixed Turing functionals, and the dotted lines indicate an instance-solution

pair.

≤sW

≤W ≤sc

≤c

P ≤sW Q

XP XQ

YP YP

Φ

Ψ

For Theorem 3.1.6 below, we will make use of a generalized Weihrauch reduction.

We include the definition here for completeness. Intuitively, P is Weihrauch reducible

to Q in the generalized sense, written P ≤gW Q, if any instance of P can be uniformly

solved with multiple uses of Q. There are several equivalent ways to formally define

this notion but we elect to use the game theoretic approach of Hirschfeldt and Jockusch

[12] (see Definitions 4.1 and 4.3).

We define the n-fold join of sets X0, . . . , Xn by

⊕
i≤n

Xi = {n} ⊕ {(i, k) : i ≤ n ∧ k ∈ Xi}.

Note that we may effectively recover n from
⊕

i≤nXi. When it is clear from context,

we will write X0 for
⊕

i≤0Xi and X0 ⊕X1 for
⊕

i≤1Xi.

Definition 1.3.2. Given problems P and Q, the reduction game G(Q → P) is a

two-player game ending when one player wins. The game is played as follows.
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For the first move, Player I begins by playing a P-instance X0. Player II responds

by either playing an X0-computable solution to X0, in which case they win, or by

playing a Q-instance Yn ≤T X0. If Player II cannot respond, Player I wins.

On the nth move, for n > 1, Player I plays a solution Xn−1 to the Q-instance Yn−1.

Player II responds by either playing a (
⊕

i<nXi)-computable solution to X0, in which

case they win, or by playing a Q-instance Yn ≤T (
⊕

i<nXi).

If there is no move at which Player II wins, then Player I wins.

Definition 1.3.3. A computable strategy for Player II in the reduction game G(Q→ P)

is a Turing functional which, when given the join of the first n moves of Player I,

outputs the nth move for Player II. Specifically, the strategy is a functional Φ such

that, if Z is the join of the first n moves of Player I, then ΦZ = V ⊕ Y where Y is

the nth move of Player II, and V = {1} if Player II wins with Y , or V = ∅ otherwise.

The strategy is winning if it allows Player II to win no matter what moves Player II

makes.

Definition 1.3.4. We say P is Weihrauch reducible to Q in the generalized sense,

P ≤gW Q, if there is a winning computable strategy for Player II in the game G(Q→ P).

The figure below illustrates how the notion P ≤gW Q relates to those given in

Definition 1.3.1. In general, as Theorem 3.1.6 witnesses, P ≤gW Q does not imply

P ≤c Q.

≤sW

≤W ≤sc

≤gW ≤c



Chapter 2

Matching Problems

In this chapter, we investigate a generalization of Hall’s theorem for matchings on

bipartite graphs. We abstract the notion of a bipartite graph to a matching problem

P = (A,B,R) where A and B are subsets of N, and R ⊆ A×B. We call an injection

f : A→ B a solution of P if (a, f(a)) ∈ R for all a ∈ A. In other words, if A and B are

disjoint then f is a matching of the bipartite graph G = (A ∪B,R). Previous reverse

mathematical analysis of theorems concerning the existence of solutions to matching

problems have all required the assumption that for each a, the set {b : (a, b) ∈ R} is

finite. Equivalently, G = (A ∪B,R) is a locally finite graph. In this work, we do not

require this condition and find necessary and sufficient conditions for this more general

matching problem to have a unique solution. We show that this result is classically

a biconditional, but the relationship between each implication is more complicated

in reverse mathematics. In particular, we show one direction is equivalent to ACA0

over RCA0 and show that the other, while provable in ACA0, is considerably more

intricate to work with. We obtain a partial reversal of this direction and study several

16
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weakenings of it.

2.1 Introduction

A matching problem is a triple P = (A,B,R) of sets with R ⊆ A×B. A solution to

a matching problem is an injection f : A→ B such that (a, f(a)) ∈ R for all a ∈ A.

If (a, b) ∈ R we say b is a permissible match for a. Thus a solution f simply picks a

unique permissible match for each element of A. For our purposes, we assume A and

B are both subsets of N.

To simplify notation we abbreviate the set of permissible matches of an element a

by R(a), that is

R(a) = {b : (a, b) ∈ R}.

For a subset A0 ⊆ A, we write R(A0) for the set
⋃
a∈A0

R(a). If a well-order (A,≤A)

is given, we denote the initial sequence of an element a in this well order by i≤A(a),

that is

i≤A(a) = {a′ ∈ A : a′ <A a}.

If the well-order is clear from context, we suppress the subscript. The sets R(i≤A(a))

will be central to the work below.

Matching problems appear by several equivalent formulations in the literature. If

A is a family of non-empty sets, a transversal or system of distinct representatives

is a set containing exactly one distinct element from each A ∈ A. Thus each A ∈ A

is the set containing exactly its own permissible matches. This is the view from

which matching problems were discussed in the early work of Philip Hall [9] and

Marshall Hall [8]. Necessary and sufficient conditions were found to ensure a matching
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problem has at least one solution for finite A in [9] and this was extended to infinite

A in [8]. A critical hypothesis in both works is that for each a ∈ A, the set R(a) is

finite. Equivalently no a ∈ A may have infinitely many permissible matches. This

requirement is known as Hall’s condition.

The results of Hall [9] and Hall [8] came to be known as the marriage theorem

with the intuition that the members of A require spouses from eligible partners in B.

In these terms, the desired injection f : A→ B respecting R is called an espousing of

the society (A,B). In this view, the theorems of the two Halls were analyzed reverse

mathematically by Hirst [15]. In Hirst and Hughes [19], [18] combinatorial conditions

were found which exactly characterize matching problems with a unique solution and

matching problems with a fixed finite number of solutions. The reverse mathematics

of these conditions were also determined.

The usual framework used to study matching problems is graph theory. Indeed,

every bipartite graph G = (U ∪ V,E) gives rise to a matching problem PG = (U, V,E)

and vice versa. Hall’s condition is simply the requirement that G is locally finite. For

a wonderful introduction to matching from this viewpoint, we recommend Chapter 2

of Diestel [4].

In this chapter, we remove Hall’s condition and seek to understand a principle

about matching problems motivated from the work of Hirst and Hughes [18]. Unless

specified otherwise, any matching problem P = (A,B,R) below may contain a ∈ A

for which R(a) is an infinite set.

Note a total-order (A,≤A) is a set A with a homogeneous relation ≤A such that

≤A is transitive, antisymmetric, and for every pair a, a′ ∈ A, either a ≤A a′ or a′ ≤A a.

We call (A,≤A) a well-order if every non-empty subset of A contains a least element

with respect to ≤A.
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Theorem 2.1.1. Let P = (A,B,R) be a matching problem. There is a well-order

(A,≤A) such that for each a ∈ A, there is a unique b ∈ B satisfying

R(a)−R(i≤A(a)) = {b},

if and only if P has a unique solution.

Proof. Fix P = (A,B,R). For the only if direction, suppose we have a well-order

(A,≤A) as hypothesized and define f : A → B by f(a) = b, where b is the unique

element in R(a)−R(i(a)). Then f is the unique solution of P . To see that f is indeed a

solution, note if f were not injective witnessed by say a′ ≤A a, then f(a′) ∈ R(i(a)) and

f(a′) ∈ R(a)−R(i(a)), a contradiction. To see that it is unique, suppose g : A→ B

is a distinct solution. Fix the ≤A-least a such that g(a) 6= f(a). So g(a) ∈ R(i(a)).

Let D = {a′ <A a : g(a) ∈ R(a)}. Since g is injective, g(a) 6= f(a′) = g(a′) for any

a′ ∈ D. Now take a′, the ≤A-least element of D. So g(a) 6∈ R(i(a′)) and g(a) 6= f(a′).

This implies that R(a′)−R(i(a′)) = {f(a′), g(a)}, a contradiction.

For the if direction, let f be the unique solution of P . Define a binary relation v

on A by a′ v a if and only if f(a′) ∈ R(a). Since f is a unique solution of P , it follows

that v is reflexive, anti-symmetric and acyclic. Let ≤′A be the transitive closure of v.

Then ≤′A is a partial order. We claim every chain in ≤′A is well-founded. Suppose not:

then there is an infinite descending chain A0 = {a0 ≥′A a1 ≥′A · · · }. By expanding

A0 with finite chains in v if necessary, assume for each n that an w an+1. Thus

f(an+1) ∈ R(an). Define a second solution g to P by letting g(a) = f(a) if a 6∈ A0 and

g(an) = f(an+1) for each an ∈ A0. This contradicts that f is unique. Since (A,≤′A) is

a well-founded partial order, we may find a well-ordering of the maximal chains of

≤′A to obtain a well-order (A,≤A). This well-order (A,≤A) is as desired. If not, then
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there is some a ∈ A with R(a)−R(i(a)) = {f(a), b}. Note b cannot be f(a′) for any

other a′ ∈ A, since that would imply a′ ≤ a and b ∈ R(i(a)). So we may similarly

define a second solution by letting g agree with f everywhere except a, and setting

g(a) = b.

The naive proof of this theorem is straight-forward but requires heavy machinery.

Indeed, the only if direction used induction on a general well-order while the if direction

invoked the well-ordering principle. We will show below each of these proofs can be

formalized in ACA0.

For the purposes of our analysis, we divide Theorem 2.1.1 into its two implications.

We use OTS and STO to label ‘if’ and ‘only if’ implications respectively.

Statement 2.1.2. STO : Let P = (A,B,R) be a matching problem. If P has a

unique solution, then there is a well-order (A,≤A) such that for each a ∈ A, there is a

unique b ∈ B satisfying

R(a)−R(i≤A(a)) = {b}.

Statement 2.1.3. OTS: Let P = (A,B,R) be a matching problem. If there is a

well-order (A,≤A) such that for each a ∈ A, there is a unique b ∈ B satisfying

R(a)−R(i(a)) = {b},

then P has a unique solution.

The acronyms abbreviate “solution then order” and “order then solution” respec-

tively.
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2.2 The principles STO and OTS

To begin our analysis, we show that OTS is provably equivalent to ACA0 over RCA0.

The forward direction is straight-forward. For the reversal, we code the range of an

arbitrary injection into the unique solution of a matching problem.

Theorem 2.2.1 (RCA0). The following are equivalent:

1. ACA0

2. OTS: Let P = (A,B,R) be a matching problem. If there is a well-order (A,≤A)

such that for each a ∈ A, there is a unique b ∈ B satisfying

R(a)−R(i(a)) = {b},

then P has a unique solution.

Proof. To see that 1 implies 2, let P = (A,B,R) be a matching problem with a

well-order (A,≤A) satisfying the hypothesis of 2. The set f ⊂ A×B where

(a, b) ∈ f ↔ [(a, b) ∈ R ∧ (∀c ∈ A)(c <A a→ (c, b) 6∈ R)]

is arithmetically definable with parameters A,B,R and ≤A. Thus ACA0 proves the

existence of such a set.

The properties of ≤A imply that f is the desired injection from A to B. Clearly

f ⊆ R. For each a ∈ A, there must be a b ∈ B with (a, b) ∈ f , as ≤A guarantees

a unique witness b such that (a′, b) 6∈ R for all a′ <A a. Since this b is unique, f is

single valued. To see that f is injective, let a1 and a2 be two distinct elements of A.
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Suppose without loss of generality that a1 <A a2. Then by definition f(a2) 6∈ R(a1),

so f(a1) 6= f(a2). Thus f is a solution to P .

It remains to show that f is a unique solution. Toward a contradiction, suppose g

is a distinct solution to P . We show g cannot be injective. Let a ∈ A be the ≤A-least

element such that g(a) 6= f(a). If ` is the ≤A-least element of A, then the hypothesis

of 2 ensures |R(`)| = 1. So a 6= ` because both g(a) and f(a) are in R(a). Now, f(a)

is the unique element of R(a) that is not in R(a′) for any a′ <A a. Hence g(a) ∈ R(a′)

for some a′ <A a0. Fix c to be the ≤A-least such element. So

g(a) ∈ R(c)−R(i(c)).

Then we must have g(a) = f(c) by the definition of f . But as a was ≤A-least such

that g(a) 6= f(a) and c <A a0, we have g(a) = g(c), contradicting that g is injective.

To show that 2 implies 1, we let h : N → N be an arbitrary injection and show

that the set ran(h) exists, which suffices by Lemma III.1.3 of Simpson [22].

To do this, we computably construct a matching problem P = (A,B,R) with an

appropriate ordering such that an application of 2 yields a solution which computes

ran(h). Let A = B = N. We construct the set R and the well-order ≤A in stages. To

begin, set R−1 =≤−1= F−1 = ∅.

At stage 2s set

F2s = F2s−1 ∪ {h(s)};

R2s = R2s−1 ∪ {(2s, 2s)}; and

≤2s =≤2s−1 ∪{(n, 2s) : n ≤ 2s}.
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At stage 2s+ 1, determine if there is an m ≤ s such that m ∈ F2s. If so, take the

least such m and set

F2s+1 = F2s \ {m};

R2s+1 = R2s ∪ {(2m, 2s+ 1), (2s+ 1, 2m)}; and

≤2s+1=≤2s ∪ {(2s+ 1, 2m)} ∪ {(k, 2s+ 1) : k 6= 2m ∧ (k, 2m) ∈ ≤2s}

∪ {(2s+ 1, 2s+ 1)} ∪ {(2s+ 1, k) : (2m, k) ∈≤2s}.

Note here that R2s+1(2m) = {2m, 2s+ 1}, R2s+1(2s+ 1) = {2m} and

n0 ≤2s+1 · · · ≤2s+1 2s+ 1 ≤2s+1 2m ≤2s+1 · · · ≤2s+1 n2s−1 ≤2s+1 2s

for ni ≤ 2s+ 1.

If there is no such m, set

F2s+1 = F2s;

R2s+1 = R2s ∪ {(2s+ 1, 2s+ 1)}; and

≤2s+1 =≤2s ∪{(k, 2s+ 1) : k ≤ 2s+ 1}.

Finally, let R =
⋃
s∈ω Rs and ≤A =

⋃
s∈ω ≤s.

Note that both R and ≤A are computable because the membership of (m,n) or

(n,m) in R or ≤A is determined by stage max{m,n}. Since A = B = N, we have

that P = (A,B,R) and ≤A exist by recursive comprehension. We claim that (A,≤A)

satisfies the hypothesis of OTS.

First, to see that (A,≤A) is a well-order, note that each pair of successive even
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integers has at most two odd integers ordered between them. And each odd integer is

either directly before or directly after an even integer. Hence, the maximum length

of i(k) for any even integer k is 2k. Any odd integer is either directly before or after

such an element, so their initial segments must also be finite. Hence (A,≤A) has no

infinite descending sequences and is thus a well-order.

Next, note for all a we have that |R(a)| = 1 or |R(a)| = 2. In the first case,

either R(a) = {a} or R(a) = {a′} for some a′ 6= a. If a ∈ R(a), then a 6∈ R(i(a))

and |R(a)−R(i(a))| = 1 as desired. If a′ ∈ R(a), then by construction a ≤A a′ and

a′ 6∈ R(i(a)). So again |R(a)−R(i(a))| = 1 as desired.

If instead |R(a)| = 2, we have by construction that R(a) = {a, a′} and R(a′) = {a}

with a′ ≤A a. Furthermore, a is not an element of R(c) for all other c ∈ A. Hence, a′

is the unique member of R(a)−R(i(a)) as needed and the claim is verified.

Apply OTS to obtain a unique solution f to P = (A,B,R). Then f(2k) = 2k

for all k ∈ ω, unless at some stage s, k ∈ F2s+1. That is, f(2k) = 2k unless k was

witnessed in the range of h by some stage. Hence n ∈ ran(h) ⇐⇒ f(2n) 6= 2n. We

see ran(h) is ∆0
0-definable in f and therefore exists by recursive comprehension. This

completes the proof.

The converse STO can also be proven in ACA0 but the reversal remains elusive.

The key insight towards formalizing the proof of Theorem 2.1.1 in reverse mathematics

is to use the statement Ext(ω∗).

Note a poset (P,≤P ) is a set P paired with a homogeneous relation ≤P on P

which is reflexive, antisymmetric, and transitive. We call ≤P a partial order on P ,

and we say X ⊆ P is a chain if every pair in X is comparable under ≤P . We say a

poset is well-founded if every chain contains a least element with respect to ≤P .
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Statement 2.2.2. Ext(ω∗): If (P,≤P ) is a countable well-founded poset, then there

is a well-order extending (P,≤P ), i.e., there is a well-order (P,≤′) such that for all

x, y ∈ P , x ≤P y implies x ≤′ y.

The notation Ext(ω∗) is based on Downey, Hirschfeldt, Lempp, and Solomon [5].

Theorem 1 of [5] states that Ext(ω∗) is provable in ACA0, implies WKL0 over RCA0,

and is not provable in WKL0. The exact reverse mathematical strength of Ext(ω∗)

is unknown. Below we show that STO implies Ext(ω∗) over RCA0. Combining this

with the result of Downey, Hirschfeldt, Lempp, and Solomon yields that STO is not

provable in WKL0.

Theorem 2.2.3 (ACA0). STO: Let P = (A,B,R) be a matching problem. If P has

a unique solution, then there is a well-order (A,≤A) such that for each a ∈ A, there is

a unique b ∈ B satisfying

R(a)−R(i≤A(a)) = {b}.

Proof. We work in RCA0 and formalize the proof of STO given in Theorem 2.1.1,

noting where ACA0 is required. Let P = (A,B,R) be a matching problem with unique

solution f . Define a binary relation v on A by a′ v a if and only if f(a′) ∈ R(a). The

relation v exists by recursive comprehension. Note v is reflexive, anti-symmetric,

and acyclic because f is a unique solution. Apply ACA0 to obtain ≤′A, the transitive

closure of v. Note that ≤′A is arithmetically definable:

≤′A= {(x, y) : ∃〈x1, x2, . . . , xn〉(x = x1 v x2 v · · · v xn = y)}.

Clearly ≤′A is a partial order.

We claim ≤′A is well-founded. Suppose not: then there is an infinite descending
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chain A0 = {a0 ≥′A a1 ≥′A · · · }. Expand and relabel A0 with finite chains from v if

necessary to obtain that an w an+1 for all n. Thus f(an+1) ∈ R(an). Define a second

solution g to P by letting g(a) = f(a) if a 6∈ A0, and g(an) = f(an+1) for each an ∈ A0.

Note that g exists by recursive comprehension, which contradicts that f is unique.

Apply Ext(ω∗) to the well-founded partial order (A,≤′A) to obtain a well-order

(A,≤A). This well-order (A,≤A) is as desired. If not, then there is some a ∈ A with

R(a)− R(i(a)) = {f(a), b}. Note b cannot be f(a′) for any other a′ ∈ A, since that

would imply a′ ≤ a and b ∈ R(i(a)). So we may similarly define a second solution by

letting g agree with f everywhere except a, and setting g(a) = b. As Ext(ω∗) follows

from ACA0, the proof is complete.

While we cannot reverse STO to ACA0, we obtain a partial reversal to the principle

Ext(ω∗).

Theorem 2.2.4. RCA0 + STO ` Ext(ω∗).

Proof. Let P be a well-founded partial order. Without loss of generality, assume

P = (N,≤N). We define a matching problem P ′ = (N,N, R) with

R = {(n,m) : m ≤P n}.

Note for each n, R(n) = {m : m ≤P n}. Clearly, the identity map f : N → N is a

solution to P ′, and both P ′ and f exist by recursive comprehension.

We claim that f is unique. Suppose not and let g : N→ N be a solution differing

from f . Fix an n0 such that g(n0) 6= f(n0) = n0. Apply primitive recursion to define

the sequence 〈ni〉i∈N with ni+1 = g(ni). Note for each i, ni+1 ≤P ni as g(ni) = ni+1.

Because g is injective, it follows from Σ0
0 induction that ni+1 6= ni for all i. Thus P
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contains an infinite descending chain n0 >P n1 >P · · · , a contradiction. Apply STO

to P ′ and obtain a well order (N,≤′) such that for all n, there exists a unique m with

R(n)−R(i≤′(n)) = {m}.

We need to show that (N,≤′) extends (N,≤P ), i.e., for every n and m, if n ≤P m

then n ≤′ m. Call n an error witnessed by m if n <′ m, but m <P n. Thus it suffices

to show that no n is an error. By way of contradiction, suppose not: then there exists

some pair n and m such that n is an error witnessed by m. Notice then that m must

be an error as well. Indeed, as n ∈ i≤′(m) and m ∈ R(n), R(m)− R(i≤′(m)) = {`}

for some ` 6= m. Note ` <P m because ` ∈ R(m), and since ` 6∈ R(i≤′(m)) we have

m <′ `. Thus ` witnesses that m is an error.

Note also that n being an error is definable by a Σ0
1 formula: there exists a witness

to show n is an error. If follows then from Lemma II.3.7 of Simpson [22] that there

is either a finite set X containing all errors, or there is an injection h : N→ N such

that n is an error if and only if there is an i such that h(i) = n. We show neither case

can obtain, as else we reach a contradiction. For the first case, let X be the set of

all errors, and let n be the ≤′-least element of X. Let m witness that n is an error.

Then for all ` <′ n, ` cannot be an error. So n 6≤P ` and m 6≤P ` because ` <′ n <′ m.

Hence m,n 6∈ R(`) for any ` <′ n, and so R(n)−R(i≤′(n)) = {n,m}, a contradiction.

For the latter case, we use h to define an infinite descending chain in P . First,

define an auxiliary function h1(n,m) which outputs 1 if n is an error witnessed by
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h(m). Specifically, set

h1(n,m) =


1 if n <′ h(m) and h(m) <P n

0 otherwise

Note if n is an error, then such an m must exist as any witness for n is also an

error. By minimization, there exists a function j such that j(n) equals the least m

with h1(n,m) = 1. Intuitively, j(n) is the least index (with respect to h) of an error

witnessing that n itself is an error. Apply primitive recursion to define the sequence

〈ni〉i∈N given by n0 = h(0) and ni+1 = h(j(ni)). Notice for each i, ni+1 <P ni because

h1(ni, j(ni)) = 1 which ensures ni+1 = h(j(ni)) <P ni. Thus 〈ni〉i∈N is an infinite

descending chain in P , contradicting that P is well-founded.

We conclude P contains no errors which completes the proof.

Corollary 2.2.5. The statement STO is not provable in WKL0.

Proof. By Theorem 1 of [5], Ext(ω∗) is not provable in WKL0. By Theorem 2.2.4,

Ext(ω∗) is provable in RCA0 + STO. Hence, STO is not provable in WKL0.

2.3 Variants of STO in reverse mathematics

As mentioned above, we do not currently know of any reversal of STO to ACA0. We

conjecture one exists.

Conjecture 2.3.1 (RCA0). The following are equivalent

1. ACA0
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2. STO

The difficulty in obtaining ACA0 from STO seems to arise due to the relatively

weak coding potential in the arbitrary well-order STO yields. In view of this difficulty,

we weaken the principle STO to possibly illuminate under what assumptions these

difficulties might vanish. As mentioned above, a principle like STO was studied in

Hirst and Hughes [18] for matching problems obeying Hall’s condition. Specifically,

the following analogue of STO appears in Theorem 7 of [18].

Theorem 2.3.2. Over RCA0, the following are equivalent:

1. ACA0

2. Suppose P = (A,B,R) is a matching problem such that every a ∈ A has only

finitely many permissible matches. If P has a unique solution, then there is an

enumeration 〈ai〉i≥1 of A such that |R(a1, . . . , an)| = n for every n ≥ 1.

Contrasting item 2 with STO yields two key differences. The first is, of course,

Hall’s condition, but the second and key difference is the structure of the resulting

object guaranteed by the principle. Here, the resulting object is a sequence, while

STO only guarantees a well-order. Obtaining a sequence yields two advantages. First,

the order type of the underlying well-order is ω; second, there is an effective way to

determine the set of predecessors of any element in the sequence. Neither of these

may hold in the well-order which STO yields. Thus, we are motivated to investigate

the following weakenings of STO.

Statement 2.3.3. STO(F): Let P = (A,B,R) be a matching problem with a unique

solution in which every element has finitely many permissible matches. Then there is



30

a well-order (A,≤A) such that for every a ∈ A, there is a unique b ∈ B such that

R(a)−R(i(a)) = {b}.

Statement 2.3.4. STO(ω): Let P = (A,B,R) be a matching problem with a unique

solution, in which every element has finitely many permissible matches, and A is

infinite. Then there is a well-order (A,≤A) of type ω such that for every a ∈ A, there

is a unique b ∈ B such that

R(a)−R(i(a)) = {b}.

So STO(F) is STO with Hall’s condition reinstated, and STO(ω) forces every

element to have finitely many predecessors in the resulting well-order. Based on the

similarity of these principles to item 2 in Theorem 2.3.2, it is reasonable to suspect

them provably equivalent to ACA0 over RCA0. As we show next, this is indeed the case

with STO(ω), but the proof requires a completely new reversal than what appears in

Hirst and Hughes [18].

Theorem 2.3.5 (RCA0). The following are equivalent

1. ACA0

2. STO(ω)

Proof. To see that (1) implies (2), let P = (A,B,R) be a matching problem which

satisfies Hall’s condition and has a unique solution. Apply Theorem 2.3.2 to obtain

an enumeration of A, 〈ai〉i≥1 such that |R(a1, . . . , an)| = n for every n ≥ 1. Clearly,

the well-order (A,≤A) defined by am ≤A an if and only if m ≤ n is as desired.
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For the reversal, we work in RCA0 and use STO(ω) to deduce the contrapositive of

Kőnig’s lemma. This suffices by Theorem III.7.2 of Simpson [22]. Let T ⊂ N<N be

a finitely branching tree with no infinite paths. We show T must be finite. Assume

for sake of contradiction that T is infinite. Let A = B = T and define R ⊆ A×B as

follows

(σ, τ) ∈ R ⇐⇒ (σ = τ) ∨ (|τ | = |σ|+ 1 ∧ σ � τ).

Let P = (A,B,R) be the associated matching problem, and note that P is computable

in T , and hence exists by ∆0
1 comprehension. Note that as T is finitely branching, for

each σ ∈ A, R(σ) is finite as σ has finitely many immediate successors in T . Thus P

satisfies Hall’s condition.

We claim P has as a unique solution, namely the identity function f . Clearly, f

exists by ∆0
1 comprehension and is a solution. To see that it is unique, suppose g is

a distinct solution, and let σ0 be such that σ0 = f(σ0) 6= g(σ0). Let σ1 = g(σ0), and

note by construction that σ1 is an immediate successor of σ0 and as g is a solution,

g(σ1) 6= σ1 = g(σ0). Proceeding by induction, we define σn = g(σn−1); note that for

each n, σn is an immediate successor of σn−1. Hence closing {σn : n ∈ N} under prefix

defines an infinite path in T , a contradiction.

Apply STO(ω) to obtain a well-order of A = T of type ω such that for each σ ∈ A,

there is a unique τ ∈ B with

R(σ)−R(i(σ)) = {τ}.

We claim that if σ � τ then τ ≤A σ. To see this, suppose not and let τ be the

lexicographically least string such that there is a σ with σ ≺ τ but σ ≤A τ . Note as τ
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is least, there can be no string σ ≺ µ ≺ τ with τ ≤A µ by transitivity. Thus τ is an

immediate successor of σ. Note that σ is the only element of T not equal to τ with

τ ∈ R(σ). Again, as τ is least, all µ ∈ T with µ � σ must appear later in ≤A than σ,

that is σ ≤A µ. This implies that every element µ ≤A σ satisfies

R(µ) ∩ {σ, τ} = ∅.

Hence, R(σ)−R(i≤A(σ)) = {σ, τ}, a contradiction. This verifies the claim.

Now, every element of T appears before λ in (A,≤A). Since this well-order is

of type ω, λ must have only finitely many ≤A-predecessors. So T is finite and this

completes the proof.

If one could somehow refine an instance P = (A,B,R) of STO to an instance

P ′ = (A,B,R′) satisfying Hall’s condition in such a way that an application of STO(ω)

correctly orders A with respect to the original relation R, we would obtain a reversal to

ACA0. This motivates an analysis of these principles using computable and Weihrauch

reductions to determine if this is possible. We conjecture STO and STO(ω) are not

equivalent under one of ≤c, ≤sc, ≤W or ≤sW.

Now, turning our attention to STO(F), we obtain immediately from Theorem 2.3.5

the following.

Corollary 2.3.6. The statement STO(F) is provable in ACA0.

However, losing the guarantee that the well-order is of type ω reintroduces the

original coding difficulties with STO. Though we gain Hall’s condition as a hypothesis

in STO(F), we so far are only able to show STO(F) implies WKL0 over RCA0.

The idea of the proof is to use a well-order to guide the way up an infinite path in
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a subtree T of 2<N. Specifically, we will build a matching problem (A,B, R) with pairs

aσ, bσ ∈ A for each σ ∈ T . The resulting well-order (A,≤A) will then have aσ <A bσ

if σ_0 is extendible to an infinite path, or bσ <A aσ if σ_1 is extendible to an infinite

path. In the event that either is extendible, the well-order will make the arbitrary

choice of which side to follow.

The way we will achieve this is with auxiliary elements c, d ∈ A. To illustrate the

idea notice if (a, b), (b, a), (c, d), (d, c) ∈ R then matching a and b, and c and d, will

result in a solution. To force a <A b, we further add (c, b), (b, d) to R. Then a must

come before c, and c must come before b. Similarly, we can ensure b <A a by adding

(c, a) and (a, d) to R. This decision will be made when we see a certain string τ either

has τ_0 6∈ T or τ_1 6∈ T .

Theorem 2.3.7. Over RCA0, STO(F) implies WKL0

Proof. Let T be an arbitrary infinite tree in 2<N. We build a matching problem

P = (A,B, R) computable in T as follows. We first construct five countable sequences

of sets 〈An〉, 〈Bn〉, 〈Cn〉, 〈Dn〉 and 〈Rn〉. We conclude by setting

A =
⋃
n∈N

An, B =
⋃
n∈N

Bn, C =
⋃
n∈N

Cn, D =
⋃
n∈N

Dn, R =
⋃
n∈N

Rn,

and A = B = A ∪B ∪ C ∪D.

Construction. To begin, let A′ = {a0, a1, . . . }, B′ = {b0, b1, . . . }, C ′ = {c0, c1, . . . },

and D′ = {d0, d1, . . . } be four infinite disjoint computable subsets of N. We pull from

these sets to build the constituents of P . For ease of notation, let aσ = am where m

is the code for σ ∈ T . Define bσ, cσ and dσ similarly. To begin the construction, let

A−1 = {aλ}, B−1 = {bλ}, and C−1 = D−1 = ∅. Let R−1 = {(aλ, bλ)}.



34

Distribute the stages of the construction so that every string τ ∈ 2<ω of length

n is considered in turn. Suppose we are at stage n and considering string τ . Unless

explicitly defined otherwise, we set An = An−1, Bn = Bn−1, Cn = Cn−1, Dn = Dn−1,

and Rn = Rn−1.

If τ 6∈ T , proceed to the next stage. If τ ∈ T , determine if τ_0 ∈ T , and if

τ_1 ∈ T . This leads to four cases. After we define Rn, the stage is complete.

Case 1: τ_0 ∈ T and τ_1 ∈ T . As both successors of τ are in T , either may be

extendible to a path, so we add aτ and bτ to the problem without forcing either of

aτ <A bτ or bτ <A aτ . Specifically, set An = An−1 ∪ {aτ}, Bn = Bn−1 ∪ {bτ}, and

Rn = Rn−1 ∪ {(aτ , bτ ), (bτ , aτ )}.

Case 2: τ_0 ∈ T , but τ_1 6∈ T . In this case, as τ is not extendible via τ_1, we

ensure the well-order puts aτ <A bτ . To do this, let

An = An−1 ∪ {aτ}, Bn = Bn−1 ∪ {bτ}, Cn = Cn−1 ∪ {cτ} and Dn = Dn−1 ∪ {dτ},

and set

Rn = Rn−1 ∪ {(aτ , bτ ), (bτ , aτ )} ∪ {(cτ , dτ ), (dτ , cτ )} ∪ {(cτ , bτ ), (bτ , dτ )}.

Case 3: τ_0 6∈ T and τ_1 ∈ T . Here we ensure the well-order has bτ <A aτ . To

do this, update An, Bn, Cn, and Dn as in case 2. Set

Rn = Rn−1 ∪ {(aτ , bτ ), (bτ , aτ )} ∪ {(cτ , dτ ), (dτ , cτ )} ∪ {(cτ , aτ ), (aτ , dτ )}.
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Case 4: τ_0 6∈ T and τ_1 6∈ T . In this case τ is not extendible to an infinite

path in T . And moreover, for any predecessor σ of τ , one of σ_0 or σ_1 is also not

extendible. We find the longest possible string σ for which this has not already been

encoded into the matching problem and update Rn with respect to this σ.

Specifically, set Cn = Cn−1 ∪ {cτ}, Dn = Dn−1 ∪ {dτ}, and fix the string σ ≺ τ of

greatest length which has a successor of length n + 1 in T . Such a σ is guaranteed

as T is infinite. Let υ be the witnessing successor of σ. So υ � |σ| = τ � |σ| = σ, but

υ(|σ|) 6= τ(|σ|). If υ(|σ|) = 0, then τ(|σ|) = 1, so we ensure aσ <A bσ. Set

Rn = Rn−1 ∪ {(cτ , dτ ), (dτ , cτ )} ∪ {(cτ , bσ), (bσ, dτ )}.

If instead υ(|σ|) = 1, we have τ(|σ|) = 0, so we make bσ <A aσ. To do this, set

Rn = Rn−1 ∪ {(cτ , dτ ), (dτ , cτ )} ∪ {(cτ , aσ), (aσ, dτ )}.

This completes the construction.

Verification. We need show that P has a unique solution, satisfies Hall condition,

and that any well-order guaranteed by STO(F) encodes a path in T . We do each in

succession.

Claim. The map f : A → B defined by

aσ 7→ bσ, bσ 7→ aσ, cσ 7→ dσ, and dσ 7→ cσ,

for all σ ∈ T is the unique solution of P .

Clearly f is a solution to P . To show that f is unique, we first show that no string
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σ ∈ T gave rise to aσ and bσ which were each forced to have aσ <A bσ and bσ <A aσ.

That is R(aσ) 6= {bσ} only if R(bσ) = {aσ}, and R(bσ) 6= {aσ} only if R(aσ) = {bσ}.

Suppose for sake of contradiction that this occurred. Then there are distinct

successors of σ in T , say τ and υ, such that

{(cτ , aσ), (aσ, dτ ), (cυ, bσ), (bσ, dυ)} ⊂ R

This implies that σ is the longest substring of τ with a successor of length |τ | + 1

in T . Similarly, σ is the longest substring of υ with a successor of length |υ|+ 1 in

T . Without loss of generality, assume |υ| ≤ |τ |. By construction, we must have that

τ(|σ|) = 1 and υ(|σ|) = 0. In particular, we have that τ(|σ|) 6= υ(|σ|). So it must

be the case that σ_0 has a successor in T of length |τ |+ 1. In particular, σ_0 must

have a successor T of length |υ|+ 1 ≤ |τ |+ 1. This contradicts the fact that σ is the

longest predecessor of υ with a successor of length |υ|+ 1 for σ_0 � υ and has length

greater that |σ|.

Hence we see if R(aσ) 6= {bσ}, then R(bσ) = {aσ}, and if R(bσ) 6= {aσ}, then

R(aσ) = {bσ}. This allows us to show that f is unique. Suppose toward a contradiction

that h is a distinct solution of P . Fix the lexicographically least τ ∈ T such that

h(cτ ) 6= f(cτ ) = dτ . Note if h disagrees on any aτ or bτ , it must disagree on some cτ as

well. There must be some σ ∈ T such that h(cτ ) ∈ {aσ, bσ}. Without loss of generality,

assume h(cτ ) = aσ. Then h(bσ) 6= aσ as h is an injection. So R(bσ) = {aσ, h(bσ)}

which implies R(aσ) = {bσ}. But by the construction, we must have that dτ ∈ R(aσ)

since aσ ∈ R(cτ ), a contradiction.

This verifies the claim.

Claim. The problem P = (A,B, R) satisfies Hall’s condition. That is, for every
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x ∈ A, the set R(x) is finite.

For sake of contradiction, suppose some element ofA has infinitely many permissible

matches. This must be an element of A or B, since for all n ∈ ω, |R(cn)| ≤ 2 and

|R(dn)| ≤ 2. Without loss of generality, assume the element to be aσ for some σ ∈ T .

Specifically, suppose

R(aσ) = {bσ, dτ0 , dτ1 , dτ2 , . . . }.

By construction we must have for every i, that σ_1 � τi; that σ is the longest

predecessor of τi such that σ_0 has a successor of length |τi|+ 1; and that no τi has a

successor in T . Take some τj and τk for which |τj| < |τk|. Note τj 6≺ τk but σ_1 ≺ τj

and σ_1 ≺ τk. Thus σ_1 has a successor of length |τk| ≥ |τj|+ 1. This contradicts

that σ was the longest predecessor of τj with a successor of length |τj|+ 1. Thus R(n)

is finite for all n ∈ A.

Claim. Any well-order on A satisfying the conclusion of STO(F) computes a path in

T .

As P is a matching problem with a unique solution in which every element has

finitely many permissible matches, we apply STO(F) to obtain a well-order (A,≤A)

such that for every x ∈ A, there is a unique y ∈ B such that

R(x)−R(i≤A(x)) = {y}.

Define a sequence g = 〈g(n)〉n∈N recursively as follows:

g(0) =


0 if aλ ≤A bλ

1 if bλ ≤A aλ
and g(n) =


0 if ag�n ≤A bg�n

1 if bg�n ≤A ag�n
.
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Clearly g is computable in ≤A. We claim g is a path in [T ].

Clearly g � 0 = λ has infinitely many successors in T because T is infinite. Suppose

by induction that g � n has infinitely many successors in T . If both (g � n)_0 and

(g � n)_1 have infinitely many successors in T , then so must g � (n + 1). Suppose

without loss of generality that (g � n)_0 does not. Then by our induction hypothesis

(g � n)_1 must have infinitely many successors. Moreover there is a maximum length

` such that if τ ∈ T with (g � n)_0 � τ , then |τ | ≤ `. Hence, there is some

τ � (g � n)_0 which has no successors in T , such that at a stage in our construction

we ensured

{(cτ , dτ )} ∪ {(cτ , a(g�n)), (a(g�n), dτ )} ⊆ R.

Thus we must have b(g�n) ≤A cτ ≤A a(g�n). The definition of g then implies that we

have g(n) = 1. So g � (n+ 1) = (g � n)_1 has infinitely many successors in T .

We conclude that g � n ∈ T for all n. Thus g ∈ [T ] and the proof is complete.

We conjecture that WKL0 is not sufficient to prove STO(F). A reversal of STO(F)

to ACA0 would yield a reversal for STO.

We conclude by weakening STO sufficiently to obtain a principle provable in WKL0.

Definition 2.3.8. We say a matching problem P = (A,B,R) is bounded if there is a

function h : A→ N such that for all a ∈ A, if b ∈ R(a), then b < h(a).

Statement 2.3.9. STO(B): If P = (A,B,R) is a bounded matching problem with a

unique solution, then there is a well-order (A,≤A) such that for every a ∈ A, there is

a unique b ∈ B such that

R(a)−R(i(a)) = {b}.

Bounded matching problems were studied in Hirst [15] and Hirst and Hughes [18].
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In particular, Theorem 9 of [18] shows that the restriction of Item 2 from Theorem

2.3.2 to bounded matching problems is equivalent to WKL0 over RCA0. We state it

here for convenience.

Theorem 2.3.10. Over RCA0, the following are equivalent:

1. WKL0

2. Suppose P = (A,B,R) is a bounded matching problem. If P has a unique

solution, then there is an enumeration 〈ai〉i≥1 of A such that |R(a1, . . . , an)| = n

for every n ≥ 1.

Corollary 2.3.11. The statement STO(B) is provable in WKL0.

Though this fact follows immediately from Theorem 2.3.10, the reversal used in

[18] does not yield a reversal of STO(B) to WKL0. Indeed, the enumeration guaranteed

by Theorem 2.3.10 is again paramount in that result. It remains open if STO(B)

implies WKL0 over RCA0.

As the original difficulty of encoding sufficient information in an well-order remains

in each variant of STO, we wonder if indeed STO, STO(F), or STO(B) occupy some

area in the reverse mathematics zoo distinct from WKL0 and ACA0. Contrasting these

statements with other principles therein will be the subject of future work, alongside

a treatment of these principles under computable and Weihrauch reductions. We are

confident that a reversal of any one of these principles would shed light on the other

open implications.



Chapter 3

Finding chains and antichains in
ω-ordered posets

In this chapter we introduce and investigate CACord, a variant of the chain-antichain

principle. The chain-antichain principle CAC states that any infinite poset (P,≤P )

contains either an infinite chain or an infinite antichain. The principle CACord is then

CAC restricted to ω-ordered posets: i.e. a poset (P,≤P ) such that if x ≤P y then

x < y. We also study the stable versions SCACord and SCAC, which are respectively

CACord and CAC restricted to stable posets as defined by Hirschfeldt and Shore [13].

We show that while CAC and CACord, and SCAC and SCACord, are equivalent in reverse

mathematics, they are not equivalent in the view of computable and Weihrauch

reductions. In particular, we show that CACord 6≤c CAC, SCACord 6≤W SCAC and

SCACord 6≤sc SCAC and that these non-reductions are sharp. The first is obtained

by analyzing the complexity of infinite chains and infinite antichains in ω-ordered

posets, while the latter two results are obtained respectively by a Seetapun-style finite

extension argument and by a forcing construction which utilizes nested applications

40



41

of the tree labeling technique.

3.1 Definitions and preliminary results

Recall a partially ordered set or poset is any pair (P,≤P ) where ≤P is a reflexive,

transitive, and antisymmetric relation on P . We call P and ≤P respectively the domain

and partial order of (P,≤P ). All posets considered herein have domain contained in ω.

A chain C in (P,≤P ) is a subset of P such that any two elements in C are comparable

under ≤P , i.e.,

x, y ∈ C → (x ≤P y ∨ y ≤P x).

An antichain A in (P,≤P ) is a subset of P in which any two distinct elements are

incomparable under ≤P , written x |P y. If Q ⊆ P , we use (Q,≤QP ) to denote the

suborder of P given by ≤P restricted to elements in Q. Thus

(Q,≤QP ) = (Q,≤P � (Q×Q)).

The chain-antichain principle CAC asserts that any infinite poset must contain an

infinite chain or an infinite antichain. This can be viewed as an infinitary version of

Dilworth’s Theorem which connects the size of a maximal antichain in a finite poset

to the number of chains in that poset. Hirschfeldt and Shore [13] initialized the study

of CAC in reverse mathematics and introduced a stable version denoted SCAC.

Definition 3.1.1. For an infinite poset (P,≤P ) we say an element x ∈ P is

• small if x ≤P y for all but finitely many y ∈ P ;

• large if y ≤P x for all but finitely many y ∈ P ;
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• isolated if x |P y for all but finitely many y ∈ P .

We say P is stable if all elements are either small or isolated, or all elements are either

large or isolated. In the first case, we call P a stable poset of the small type. In the

second case, we call P a stable poset of the large type

Statement 3.1.2. SCAC: If (P,≤P ) is an infinite stable poset, then P contains either

an infinite chain or an infinite antichain.

Frequently, the posets constructed in the use and study of principles like CAC and

SCAC are what we call ω-ordered. That is, the poset (P,≤P ) respects the natural

order of ω: x ≤P y only if x ≤ y.

Definition 3.1.3. We say that poset (P,≤P ) with P ⊆ N is ω-ordered if for all

x, y ∈ P , x ≤P y implies that x ≤ y.

This motivates the study of the principles CACord and SCACord which are, respec-

tively, CAC and SCAC restricted to ω-ordered posets.

Statement 3.1.4. Let (P,≤P ) be an infinite poset. The principles CACord and

SCACord are as follows:

CACord: If (P,≤P ) is ω-ordered, then P contains an infinite chain or an infinite

antichain.

SCACord: If (P,≤P ) is stable and ω-ordered, then P contains an infinite chain or an

infinite antichain.

For every principle given in this section, we formulate them as problems for

computable and Weihrauch inductions by defining instances as posets which satisfy



43

the required hypotheses paired with solutions that are either an infinite chain or an

infinite antichain.

To begin our analysis, we show that CAC and CACord are equivalent in the sense of

reverse mathematics. That CAC and CACord are equivalent over ω-models is implicit

in Lemma 2.12 of Towsner [24].

Theorem 3.1.5. Over RCA0, the principles CAC and CACord are equivalent.

Proof. Proving CACord from CAC in RCA0 is trivial. For the other direction assume

CACord and work in RCA0. Let (P,≤P ) be an infinite poset. We refine (P,≤P ) to an

ω-ordered poset and use CACord to find an infinite chain or antichain Y of (P,≤P )

Note the following sets are ∆0
1-definable over (P,≤P ):

≤+= {(x, y) : x ≤P y ∧ x ≤ y} and ≤−= {(y, x) : x ≤P y ∧ y ≤ x}.

Hence RCA0 proves that (P,≤+) and (P,≤−) are infinite ω-ordered posets.

Apply CACord to (P,≤+) to obtain an infinite set X which is a chain or antichain

with respect to ≤+. If X is a chain, then it is a chain under ≤P and we are done.

Assume instead that X is an antichain in ≤+, and note it may not be an antichain

under ≤P . Consider (P,≤−) restricted to X: this poset (X,≤X− ) is infinite and ω-

ordered. Apply CACord to obtain an infinite set Y ⊆ X which is either a chain or

antichain with respect to ≤−. In either case, we claim Y is an infinite chain or infinite

antichain of ≤P .

If Y is a chain in ≤−, then it is an infinite chain with respect to ≤P in the opposite

direction. That is

x, y ∈ Y → (x ≤− y)→ (y ≤P x).
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If Y is instead an antichain in ≤−P , then as Y ⊆ X, no pair in Y is comparable in

either ≤− or ≤+. Hence Y is an infinite antichain in ≤P and the claim is verified.

This completes the proof.

Notice the above proof can be carried out uniformly in the given poset (P,≤P ).

The first application of CACord to a computable suborder of ≤P yields an infinite set

X. Independent of whether or not X is a chain or antichain, a second application

of CACord to a computable suborder of ≤P restricted to X yields an infinite set Y

which must be an infinite chain or infinite antichain in (P,≤P ). We may introduce

a non-uniform decision to not apply CACord a second time in the event that X is a

chain, but this is unnecessary. Hence we obtain the following.

Theorem 3.1.6. CAC ≡gW CACord.

Proof. To see CAC ≤gW CACord, consider the following strategy for G(CACord → CAC).

Given (P,≤P ), an instance of CAC, compute ≤+ and play the infinite ω-ordered poset

(P,≤+). Now a solution to (P,≤+) is an infinite subset X ⊆ P . Given X and (P,≤P ),

compute and play the infinite ω-ordered poset(X,≤X− ). Any solution of (X,≤X− ) is

identically a solution to (P,≤P ) by the proof of Theorem 3.1.5. Thus, this strategy is

winning.

The reverse direction is trivial as every instance of CACord is an instance of CAC.

Hence CACord ≤sW CAC and in particular CACord ≤gW CAC.

Though the proof of Theorem 3.1.5 is uniform, it does require two uses of CACord in

series. This suggests that CAC is not Weihrauch reducible to CACord. Indeed, showing

CAC 6≤W CACord would prove that multiple uses of CACord are necessary in any proof

of CACord → CAC over a weak enough base system. We obtain this fact by a sharper

result, namely that CAC 6≤c CAC
ord.
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That is, we show that though solving CAC is possible in any Turing ideal which

contains solutions to all instances of CACord therein, it is not the case that every

infinite poset P computes an ω-ordered poset P̂ with a solution X̂ such that X ⊕ P

computes a solution of P . This is proven by analyzing the complexity of solutions to

computable instances of CACord. Herrmann [10] constructed an infinite computable

poset which contains no infinite ∆0
2 chain or antichain. We show next that any infinite

ω-ordered poset which lacks an infinite computable chain must contain an infinite ∆0
2

antichain.

Lemma 3.1.7. If (P,≤P ) is an infinite computable ω-ordered poset and (P,≤P )

contains no infinite computable chain, then (P,≤P ) has an infinite ∆0
2-definable

antichain.

Proof. Suppose (P,≤P ) is as hypothesized and assume without loss of generality that

P = ω. Notice the set X of elements of P with no strict ≤P -successor is Π0
1-definable:

X = {x ∈ P : ∀y(x < y → x 6≤P y)}.

We claim every element of P has a successor in X. To see this, suppose not and fix

z ∈ P such that if y ≥P z, then y 6∈ X. We computably construct an infinite chain

above z. Indeed, there is a least n such that n ≥P z and n 6∈ X. Continuing, there is

a least m ≥P n with m 6∈ X and iterating this process yields an infinite computable

chain in P , a contradiction.

We construct the infinite ∆0
2-definable antichain by finding a suitable subset Y ⊆ X

computable in X. To begin, let x0 be the least element in X. Assume by induction

that xn has been found. Let xn+1 be the least element of X such that xn+1 ≥p xn + 1.
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Notice xn+1 |P xn because xn has no strict ≤P successor, and xn+1 ≥ xn + 1 > xn. To

conclude the construction, let Y = {xn : n ∈ ω}.

We claim Y is the desired ∆0
2-definable antichain. By construction Y is infinite

with Y ≤T X. Since X is ∆0
2-definable, Y must be as well. Since Y ⊆ X, no element

of Y has a strict ≤P -successor. In particular, there can be no pair xm, xn ∈ Y such

that xm ≤P xn. Hence Y is an antichain, and the proof is complete.

Theorem 3.1.8. CAC 6≤c CAC
ord.

Proof. Let (H,≤H) be Hermann’s poset constructed in Theorem 3.1 of [10]. Then

(H,≤H) is infinite and contains no ∆0
2-definable solution. Suppose (P,≤P ) is an infinite

ω-ordered poset computable from (H,≤H). If (P,≤P ) has a computable solution X,

then X cannot compute a solution of (H,≤H). If (P,≤P ) has no computable solution,

then it must have a ∆0
2 solution Y . Again, Y cannot compute a solution to (H,≤H).

The key to finding ∆0
2 solutions of CACord is noting that for any x in an ω-ordered

poset (P,≤P ), if x has no strict successors then it cannot be in an infinite chain.

Indeed, each x in P has at most x many strict predecessors. Thus the maximum

elements in each maximal finite chain form an antichain. Here by “maximal finite

chain” we mean one that is not contained in any larger finite chain.

This is not the case in general posets since any element may be a part of many

infinite chains while still having no, or only finitely many, successors. This is exactly

the nature of Herrmann’s poset (H,≤H). Its construction relies on repeatedly nesting

new finite chains within previously constructed ones.

This observation motivates investigating the relationship between general stable

posets and ω-ordered stable posets. Indeed, each element in an ω-ordered poset is

either below or incomparable with infinitely many other elements. Thus each ω-ordered
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poset is very nearly a stable poset of the small type, but some element may be both

comparable and incomparable with infinitely many elements. Note if (P,≤P ) is both

stable and ω-ordered, then it is of the small type.

We first note that the proof of Theorem 3.1.5 goes through with CAC and CACord

replaced by SCAC and SCACord respectively.

Corollary 3.1.9. Over RCA0, the principles SCAC and SCACord are equivalent.

We also note that CACord strictly implies SCACord over RCA0. This follows imme-

diately from the work of Hirschfeldt and Shore [13]: in particular, Corollary 3.6 and

Proposition 3.8 of [13] prove that CAC strictly implies SCAC over RCA0.

Now, in contrast to CAC and CACord, SCAC is computably equivalent to SCACord.

We show this next in Theorem 3.1.10. To do this, we take a given stable poset (P,≤P )

and computably refine it to a stable ω-ordered poset (Q,≤Q) such that Q contains

an infinite chain or infinite antichain X which, together with P , computes an infinite

chain or infinite antichain in the original poset. The fundamental difference from

Theorem 3.1.8 is that when refining (P,≤P ) to an ω-ordered poset, we can be sure

that we will miss at most finitely many comparabilities for each element. For instance,

if x is small in P , we know there are only finitely many y > x such that y ≤P x. If P

is of the large type, we may simply ‘flip the order’ and again miss only finitely many

comparabilities. In this way, we will be able to effectively thin any solution to the

computed SCACord instance to a solution of (P,≤P ).

Theorem 3.1.10. SCAC ≡c SCAC
ord.

Proof. It is immediate that SCACord ≤c SCAC, as every instance of SCACord is an

instance of SCAC. To see that SCAC ≤c SCACord, we fix an instance (P,≤P ) of SCAC
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and assume without loss of generality that P = ω. To proceed, we consider separately

the case in which (P,≤P ) is of the small type and the case in which (P,≤P ) is of the

large type. While the two cases will be entirely symmetric, the distinction will be

necessary in the following construction.

Assume (P,≤P ) is a stable poset of the small type. Define (Q,≤Q) so that ≤Q is

the suborder of ≤P respecting the natural order on ω:

Q = P and ≤Q= {(m,n) : m ≤ n ∧m ≤P n}.

Thus (Q,≤Q) ≤T (P,≤P ) is an instance of SCACord. Apply SCACord to obtain an

infinite set X which is a solution of (Q,≤Q).

As above, if X is a chain in Q, then it is chain in P ; if instead X is an antichain, it

may not be a solution of P . So we (X ⊕P )-computably thin X so that it is a solution

in either case.

Define the predicate R(m,n) to be

m ≤Q n↔ m ≤P n.

So R(m,n) holds if Q preserves the correct relationship between m and n and R(m,n)

fails only if m |Q n but m -P n. With X = {x0 < x1 < x2 < · · · }, define

X0 = {xi ∈ X : R(x0, xi)}.

Note X0 ⊆ X is infinite because (P,≤P ) is stable. The stability of (P,≤P ) guarantees

that (Q,≤Q) misses at most finitely many comparabilities for each element of P .

Assume we have built Xn = {xn0 < xn1 < xn2 < · · · } where xnm is the mth element
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of Xn in increasing order. Construct Xn+1 ⊆ Xn as

Xn+1 = {xni : i ≤ n+ 1} ∪ {xni : i > n+ 1 ∧R(xnn+1, xi)}.

Again, Xn+1 is infinite because (P,≤P ) is stable. Let Y = limnXn =
⋂
n∈ωXn. We

claim that Y is infinite, Y is a solution of (P,≤P ), and Y ≤T X ⊕ P .

To see that Y is infinite, notice that for all n,
∣∣⋂

i≤nXi

∣∣ ≥ n + 1, because in

particular

{x0 < x0
1 < x1

2 < · · · < xnn+1} ⊆
n⋂
i=0

Xi.

To see that Y is a solution of (P,≤P ), note that if X was a chain in (Q,≤Q),

then R(x, y) for all x < y in X, and so Y = X. As (x < y ∧ x ≤Q y)→ x ≤P y, we

conclude Y is a chain in (P,≤P ). If X was an antichain, then all x < y in X are such

that x |Q y. By construction all x < y in Y satisfy R(x, y), so x |P y. Thus Y is an

antichain in (P,≤P ). Either way, Y is a solution of (P,≤P ).

Finally, to see that Y ≤T X ⊕ P , note n ∈ Y if and only if n ∈ Xn, since at the

nth stage of the construction, all elements less than or equal to n have been removed

from X if they ever will be. Because each Xn ≤T X ⊕ P , we conclude Y ≤T X ⊕ P .

This completes the proof in the first case. The second case is symmetric: when

(P,≤P ) is of the large type, define (Q,≤Q) by

Q = P and ≤Q= {(m,n) : m ≤ n ∧ n ≤P m},

let R(m,n) be the predicate

m ≤Q n↔ n ≤P m,
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and repeat the construction.

Here we very nearly have a uniform construction. The single bit of non-uniform

information used in this proof was whether or not the stable poset (P,≤P ) is of the

small or large type. With this data given, the above construction would uniformly find

solutions to instances of SCAC using SCACord in an effective manner. This motivates

the definition of the following principles.

Statement 3.1.11. Let (P,≤P ) be an infinite stable poset. We define three principles

SCACsmall, SCAClarge, SCACtype as follows:

SCACsmall:If (P,≤P ) is of the small type, then P contains an infinite chain or an

infinite antichain.

SCAClarge: If (P,≤P ) is of the large type, then P contains an infinite chain or an infinite

antichain.

SCACtype: If (P,≤P , T ) is a triple with T ∈ {S, L} such that T = S (or L) implies

(P,≤P ) is of the small (or large) type, then P contains an infinite chain or

an infinite antichain.

Corollary 3.1.12. SCACord ≡W SCACsmall ≡W SCAClarge ≡W SCACtype

Proof. In each case, apply the construction from Theorem 3.1.10 according to whether

the given stable poset is of the small or large type. As this data is explicit in each

instance, it can be hard-coded into the forward functional Φ for each reduction.

Note that the proof of Theorem 3.1.10 requires the original instance of SCAC in

the computation of its solution, so we do not obtain strong Weihrauch equivalences
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in Corollary 3.1.12. Indeed, Corollaries 3.2.6 and 3.3.9 below yield respectively that

SCAC 6≤W SCACord and SCAC 6≤sc SCAC
ord. Together these imply the original instance

is necessary in Corollary 3.1.12. By ‘flipping the poset’ we may obtain an analogue of

Corollary 3.1.12 for strong computable reducibility.

Theorem 3.1.13. SCAC ≡sc SCAC
small.

Proof. Trivially, we obtain SCACsmall ≤sc SCAC. To show SCAC ≤sc SCAC
small, suppose

(P,≤P ) is an instance of SCAC. If (P,≤P ) is of the small type, we may witness this

reduction with the identity functionals. If (P,≤P ) is of the large type, we compute

from (P,≤P ) the dual partial order (P,≤′P ), i.e., ≤′P is defined by

x ≤′P y if and only if y ≤P x.

We claim (P,≤′P ) is a stable poset of the small type. Indeed, if x is ≤P -isolated, then

clearly x is ≤′P -isolated. If x is ≤P -large, then there is a t such that if y > t, then

x ≥P y. This implies that for each y > t, x ≤′P y. So x is ≤′P -small. This verifies the

claim.

Apply SCACsmall to (P,≤′P ) to obtain an infinite set X ⊆ P which is either a chain

or antichain in ≤′P . If X is an antichain in ≤′P , it is an antichain in ≤P . If X is a

chain in ≤′P , it a chain ≤P in the opposite direction. In either case, X is identically a

solution of (P,≤P ).

Corollary 3.1.14. SCAC ≡sc SCAC
small ≡sc SCAC

large ≡sc SCAC
type.

Proof. It remains to show that SCAC ≤sc SCAClarge and SCAC ≤sc SCACtype. For

SCACtype, take a forward functional which appends S to (P,≤P ) if it is of the small
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type, else take one that appends L; the backward functional is the identity. For

SCAClarge, proceed symmetrically to the proof of Theorem 3.1.13.

Again, as we show SCAC 6≤W SCACord and SCAC 6≤sc SCAC
ord below, we have that

the proof of Theorem 3.1.13 cannot be made uniform and hence Corollary 3.1.14 is

optimal.

3.2 Weihrauch reducibility and SCACord

In this section we prove that Theorem 3.1.10 cannot be improved with respect to

Weirauch reductions. That is, we show SCAC 6≤W SCACord. In section 3.3 we show the

same with respect to strong computable reductions, namely SCAC 6≤sc SCAC
ord. In

each case, we will need to build an instance of SCAC witnessing the non-reduction.

This is done via the forcing notion P. While the main proof in this section will be

a finite extension argument organized by P, we will require a more general forcing

argument in section 3.3.

We assume familiarity with forcing in arithmetic (see section 2.3 of [11] for a basic

overview). The conditions in this case will be finite posets π on an initial segments of

ω with an assignment function a that locks each element in π to a stable limit behavior.

We adapt the forcing notion P used in section 4 of Astor, Dzhafarov, Solomon, and

Suggs [1].

To begin, let FinPO be the set of all finite partial orders on initial segments of ω.

For each π ∈ FinPO, let ≤π denote the order relation in π and |π| be the greatest n

such that π orders ω � n. So π = (ω � |π|,≤π) = (|π|,≤π). We say a poset (P,≤P )

extends and is compatible with πp if ω � |π| ⊆ P , and for all x, y < |π| we have x ≤P y
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if and only if x ≤π y. Thus if ρ ∈ FinPO extends π then |ρ| ≥ |π|. We canonically

code each finite set π ∈ FinPO so the map π 7→ |π| is effective.

Definition 3.2.1. Let P be the following notion of forcing. A condition is a pair

p = (πp, ap) as follows:

• πp ∈ FinPO where FinPO is the set of all partial orders on initial segments of ω.

• ap is a map |πp| → {S, L, I} × (ω � |πp| + 1) such that: either for all n <

|πp|, ap(n) ∈ {S, I} × (ω � |πp| + 1), or for all n < |πp|, ap(n) ∈ {L, I} × (ω �

|πp|+ 1);

• if ap(x) = (S, t) and y ≤πp x, then y < t and ap(y) = (S, u) for some u;

• if ap(x) = (L, t) and x ≤πp y, then y < t and ap(y) = (L, u) for some u;

• if ap(x) = (S, t) or ap(x) = (L, t) and x |πp y, then y < t; and

• if ap(x) = (I, t) and x ≤πp y or y ≤πp x, then y < t.

A condition q extends p, written q ≤P p, if πq extends πp and aq ⊆ ap.

Intuitively, the map ap assigns to each x < |πp| a limit behavior and a stabilization

point t so that any other element y ≥ t in πp relates to x in the correct way (e.g., is

above x if x is small). Clearly any filter F ⊆ P gives rise to a stable poset given by⋃
p∈F π

p. We use G = (ω,≤G) to denote this poset and also use G as a name for the

generic poset in P forcing language.

We prove SCAC 6≤W SCACord by contradiction. So, we assume there is a fixed pair

of functionals, Φ and Ψ, which witness that SCAC ≤W SCACord. We then construct

a computable stable poset G = (ω,≤G), such that the stable ω-ordered poset ΦG
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contains an infinite chain or antichain X, for which ΨX is not a solution of G. We will

achieve this in two ways. The first is to ensure G has no computable solutions, so that

if there is a computable solution X of ΦG, the set defined by ΨX will be computable,

and thus not a solution of G. The second is to directly diagonalize a solution X in

ΦG by ensuring either that it contains both comparable and isolated elements in G, or

that it contains both incomparable and small elements in G.

Both goals will be met by a finite extension argument. The following lemma ensures

that from any finite poset constructed, we may computably obtain a compatible infinite

poset G without computable solutions.

Lemma 3.2.2. For any condition p ∈ P there is an infinite computable stable poset G

compatible with p such that G has no infinite computable chain or infinite computable

antichain.

Proof. Fix p ∈ P. Let Ĝ = (J,≤Ĝ) be a computable stable poset with no infinite

computable chain or infinite computable antichain. Without loss of generality, assume

J = ω − |πp|. We define G = (ω,≤G) as follows:

• ≤|π
p|

G =≤πp ;

• ≤JG=≤Ĝ;

• and for each x < |πp|:

– if ap(x) = (I, t), set x |G y for all y ∈ J ;

– if ap(x) = (S, t), set x <G y for all y ∈ J ;

– if ap(x) = (L, t), set y <G x for all y ∈ J .
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Clearly G is a computable stable poset compatible with p. Let X be an infinite

chain or infinite antichain in G. Then X is not computable. Indeed, if X is computable,

then X − |πp| is an infinite computable chain or infinite computable antichain in Ĝ, a

contradiction.

To find a solution in ΦG which we can diagonalize, we apply a Seetapun-style

construction. By finitely extending a given condition p in a uniformly computable

manner to a condition q with |πq| sufficiently large, we obtain witnesses x, y from

finite sets F in Φπq such that ΨF (x) ↓= ΨF (y) ↓= 1. The advantage we will have

is that no matter if x and y are made comparable or incomparable by πq, we may

require aq to assign limit behavior to these elements which diagonalize any solution

of ΦG extending F . The Seetapun configuration will be achieved when sufficiently

many finite chains F0, . . . , Fn have been found and diagonalized in ΦG to ensure an

antichain E made of elements from each chain Fi can be diagonalized as well. The key

combinatorial lemma that will allow us to simultaneously prevent F0, . . . , Fn and E

from extending to a solution is presented next. The idea is that as the limit behavior

of the elements in πq do not affect the local structure of πq, we may find a suitable

condition which both guarantees the witnesses from E,F0, . . . , Fn and simultaneously

diagonalizes them via limit behavior in G (e.g., if x ≤G y, we can make x small and y

isolated).

We call two conditions p, q ∈ P parallel if πp = πq. Notice if p and q are parallel

conditions, then for any functional Φ, we have Φπp = Φπq . Thus if we need to change

the limit assignments in some condition p, we can computably do so while maintaining

the structure of Φπp . This will be ensured so long as the condition we move to is

parallel to p. Since there are only finitely many conditions parallel to each p, we
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may effectively check all of them at some stage in a computable construction. In the

proof of Theorem 3.2.5, we will need a systematic way to move from a condition p

constructing a stable poset of the small type to a parallel condition q constructing a

poset of the large type. We prove we may “change our mind” about the sort of stable

poset being built at any point in the construction.

Lemma 3.2.3. If p ∈ P is such that the range of ap is contained in {S, I}×ω � |πp|+1,

then there is a parallel condition q ∈ P such that for all x < |πp|

(ap(x) = (S, t)→ aq(x) = (I, |πp|)) ∧ (ap(x) = (I, t)→ aq(x) = (L, t)).

Proof. Fix p and let q be the pair (πp, aq) with aq defined as follows: for each

x < |πp| if ap(x) = (S, t) for some t, then aq(x) = (I, |πp|), and if ap(x) = (I, t), then

aq(x) = (L, t). We show that q ∈ P . Obviously πp ∈ FinPO so it remains to show aq

satisfies the required properties.

Fix an arbitrary x < |πp|. Note aq(x) 6= (S, t) for any t. Suppose aq(x) = (I, t)

for some t. Then t = |πp| by definition. So if y ≤πp x or x ≤πp y, we have y < |πp|

because y ∈ πp, satisfying the required property.

Suppose aq(x) = (L, t) for some t. Then ap(x) = (I, t) by definition. So if x ≤πp y

then y < t. We claim ap(y) = (I, u) for some u, which implies aq(y) = (L, u), satisfying

the needed property. To see this, suppose not: by hypothesis, ap(y) = (S, u) for some

u. Since x ≤πp y, we have x < u and ap(x) = (S, v) for some v. But ap(x) = (I, t), a

contradiction.

This ability to “change our mind” at any point, and construct a stable poset of

the large type, is the core combinatorial advantage of SCAC that we will exploit over
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SCACord. Any instance of SCACord must be of the small type, while we may freely

decide at any point in the construction which type of stable poset we produce.

Before proving the desired result, we require one additional lemma. The con-

struction will produce G uniformly computably in the indices for the given pair of

functionals Φ and Ψ. The upshot of this is that we will obtain SCAC 6≤W SCACord

without having to join the initial segments of G with the finite sets F we are finding

in ΦG. Lemma 3.2.4 guarantees this is possible.

Lemma 3.2.4. Given two problems P and Q, if for each pair of functionals Φ and

Ψ, there is a computable instance of P uniformly computable in (the indices of) these

functionals which witnesses P 6≤sW Q (via Φ and Ψ), then P 6≤W Q.

Proof. Suppose P and Q are as hypothesized and f(i, j) is a computable function which

outputs (the index of) the instance X of P witnessing P 6≤sW Q via the functionals Φi

and Φj. For sake of contradiction assume that Φm and Φn witness P ≤W Q. Define a

computable function g(k) such that with m and n fixed we have

ΦY
g(k) = Φ

Φf(m,k)⊕Y
n .

Via the relativized recursion theorem, find a fixed point k such that for all Y

ΦY
g(k) = ΦY

k .

We claim that Φm and Φk contradict f(m, k), i.e., Φm and Φk witness P ≤sW Q with

X = Φf(m,k). To see this, note that f guarantees a solution Ŷ to Φ
Φf(m,k)
m = ΦX

m such
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that ΦŶ
k is not a solution to X = Φf(m,k). But by construction

ΦŶ
k = ΦŶ

g(k) = Φ
Φf(m,k)⊕Ŷ
n = ΦX⊕Ŷ

n .

Since we assumed Φn witnesses, along with Φm, that P ≤W Q, we have that ΦX⊕Ŷ
n = ΦŶ

k

is a solution to X = Φf(m,k), a contradiction. Whence, we conclude that P 6≤W Q.

We are now ready to prove the desired non-reduction. To summarize the approach,

we will suppose by way of contradiction that Φ and Ψ witness SCAC ≤sW SCACord. We

will then build a stable poset G = (ω,≤G) uniformly computably in (the indices of) Φ

and Ψ by computably finding finite extensions of conditions in P. The construction

will conclude with Lemma 3.2.2 to ensure G has no computable solution. If necessary,

we will apply Lemma 3.2.3 at one point in the construction to make G a stable poset of

the large type. Otherwise, G will be of the small type. This will be required depending

on the interaction of witness from finite sets E,F0, . . . , Fn in Φπp where πp is an initial

segment of G. Finally, Lemma 3.2.4 will ensure this yields that SCAC 6≤W SCACord.

Theorem 3.2.5. SCAC 6≤sW SCACord.

Proof. By way of contradiction, assume the functionals Φ and Ψ witness SCAC ≤sW

SCACord. So if P = (ω,≤P ) is a stable poset, ΦP is an ω-ordered stable poset and

any infinite chain or infinite antichain X in ΦP produces an infinite chain or infinite

antichain ΨX in P . We construct a computable stable poset G = (ω,≤G) which

diagonalizes this pair of functionals. That is, we construct G in an effective manner

which ensures ΦG contains either an infinite computable chain or an infinite antichain

X such that ΨX is not a solution to G. For the latter case, we will ensure that ΨX

contains a pair {a, b} such that if a and b are comparable in G then one of them is
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isolated, and if a and b are incomparable then one of a or b is either small or large.

For the former case, we will conclude our construction with an application of Lemma

3.2.2 to guarantee G has no infinite computable chain or infinite computable antichain.

As this can be done at any condition p ∈ P, we assume any poset G taken below to

extend the current condition has this property.

Begin by constructing a condition p for which πp is an initial segment of the

natural order on ω and ap assigns S or I to each element in |πp|. Make |πp| sufficiently

large to reveal a finite chain F0 in Φπp such that there exists a pair x0, y0 < |πp| with

ΨF0(x0) ↓= ΨF0(y0) ↓= 1. Such a p and F0 must exist. If not, fix p for which this

fails. Apply Lemma 3.2.2 to obtain an infinite computable stable poset G compatible

with p that has no infinite computable chain or infinite computable antichain. If ΦG

has an infinite chain X, the set defined by ΨX is finite. If ΦG has no infinite chain

then cofinitely many elements in ΦG are isolated. Thus ΦG has an infinite computable

antichain X and so ΨX is not a solution of G. In either case, Φ and Ψ fail to witness

SCAC ≤sW SCACord, a contradiction.

The only property of p needed to find F0 is that |πp| is sufficiently large. So

we can further require that ap(x0) = (S, |πp|) and ap(y0) = (I, |πp|) if x0 <πp y0, or

ap(x0) = (I, |πp|) and ap(y0) = (S, |πp|) otherwise. Note maxF0 will be isolated in

ΦG. To see this, suppose otherwise: then there is a condition q ≤P p such that the

resulting G has maxF0 is small in ΦG. From above we know ΦG must have an infinite

chain. In particular then, ΦG must have an infinite chain F0 ∪X with F0 < X. By

construction, the set ΨF0∪X has both a small element and an isolated element and so

is not a solution of G. This contradicts that Φ and Ψ witness the reduction.

Assume we are at condition qn−1 and have found finite sets F0, . . . , Fn−1 such that

for each i ≤ n− 1
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• Fi is a chain in Φπqn−1
and qn−1 ensures maxFi will be isolated in ΦG;

• minFi |Φπqn−1 maxFj for all j < i;

• there is a pair xi, yi such that min{xi, yi} > max{xj, yj : j < i} and ΨFi(xi) ↓=

ΨFi(yi) ↓= 1; and

• aqn−1(xi) = (S, |πqn−1|) and aqn−1(yi) = (I, |πqn−1 |) if xi <πqn−1 yi, or aqn−1(xi) =

(I, |πqn−1 |) and aqn−1(yi) = (S, |πqn−1|)

Find a condition qn ≤P qn−1 for which there is a chain Fn in Φπqn such that both

ΨFn(xn) ↓= ΨFn(yn) ↓= 1 for some pair xn, yn < |πqn| with min{xn, yn} > max{xi, yi :

i < n}, and minFn |Φπqn maxFi for each i < n. As before, finding Fn depends only

on |πqn| and not aqn , so by moving to a parallel condition if necessary, we can ensure

qn additionally satisfies that aqn(xn) = (S, |πqn|) and aqn(yn) = (I, |πqn|) if xn <πqn yn,

or aqn(xn) = (I, |πqn|) and aqn(yn) = (S, |πqn|) otherwise. Note the only worry is if

the assigned limit behavior of xn and yn causes conflict with a previous pair xi, yi. To

avoid this, take xn and yn sufficiently large so that they also surpass the stabilization

points of each xi and yi.

Again such a qn and Fn must exist. If not, we reach a contradiction similar to

before: apply Lemma 3.2.2 with qn−1 to obtain the stable poset G. Note maxFi is

isolated in ΦG for each i < n and ΦG must contain an infinite chain. Thus, there is

some infinite chain X with minX |ΦG maxFi for all i < n. Furthermore, for every

initial segment F of X, there is no sufficiently large pair xn, yn which enters the set

defined by ΨF . Thus ΨX will define a finite set, and we again contradict that Φ and

Ψ witness SCAC ≤sW SCACord.

Let E = {maxFi : i ≤ n}. Note E is an antichain in Φπqn and every element of E
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must be isolated in ΦG. Without loss of generality, assume n and |πqn| are sufficiently

large so that there is a pair x, y < |πqn| with ΨE(x) ↓= ΨE(y) ↓= 1. If no such n

exists, then we can continue the sequence F0, F1, . . . Fn ad infinitum to extend E to

an infinite antichain X in ΦG for which ΨX is finite, a contradiction.

The final step in our construction is to simultaneously diagonalize E and each

set F0, . . . , Fn. Let D = {xi, yi : i ≤ n} be the set of witnesses for F0, . . . , Fn. Here

we cannot guarantee that x and y are outside of D or that they are beyond the

stabilization points of each element in D. Thus we seek a condition r parallel to qn

such that ar diagonalizes each of E,F0, . . . , Fn. For E, we will ensure ar makes at

least one of x or y isolated if they are comparable in πqn , or at least one of x or y

small otherwise. To ensure the elements of E are isolated, we need to maintain the

diagonalization of the chains F0, . . . , Fn. If there is a chain Fi whose diagonalization

we cannot maintain, we re-diagonalize the pair xi, yi similar to x or y depending on

the comparability of xi and yi in πqn .

There are three cases: either x <πqn y, y <πqn x, or x |πqn y. The first two are

symmetric so we assume without loss of generality that x <πqn y or x |πqn y.

Case 1: x <πqn y. If possible, move to a condition r parallel to qn such

that ar(y) = (I, |πqn|) and for each z ∈ D we have ar(z) = aqn(z). If not,

then since y cannot be made isolated while respecting the current limit

behaviors assigned to the elements in D, there must be some s ∈ D such

that y <πqn s and aqn(s) = (S, t1) for some t1. We claim in this case x can

be made small, i.e., there is a parallel condition r′ with ar(x) = (S, |πqn|)

and ar(z) = aqn(z) for each z ∈ D. If not, then similarly there is some

element i ∈ D such that i <πqn x and aqn(i) = (I, t2) for some t2. But
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then by transitivity i <πqn s, so aqn(i) = (S, u) for some u, a contradiction.

So there is a condition r′ parallel to qn, which makes both x and y small,

since y cannot be isolated, and which agrees with qn on the limit behavior

of the elements in D. Apply Lemma 3.2.3 to r′ to obtain the parallel

condition r which makes every small element in πqn isolated and every

isolated element in πqn large. Clearly, r diagonalizes E as ar makes both

x and y isolated. To see that r diagonalizes each of F0, . . . , Fn, fix Fi

for some i ≤ n. If aqn(xi) = (S, t) and aqn(yi) = (I, u) for some t and u

then xi <πqn yi. Since ar makes xi isolated and yi large, ΨFi still contains

two comparable elements one of which is isolated. If on the other hand

aqn(xi) = (I, t) and aqn(yi) = (S, u) then yi <πqn xi or xi |πqn yi. As ar

makes xi large and yi isolated, ΨFi either contains both comparable and

isolated elements in the first case or both incomparable and large elements

in the latter case. Thus r is the desired condition.

Case 2: x |πqn y. Here we need to make either x or y small so suppose

this is not possible while respecting the limit behaviors of the elements in

D. Then there is a condition r′ parallel to qn such that ar
′
(x) = ar

′
(y) =

(I, |πqn|) and ar
′
(z) = aqn(z) for all z ∈ D. Apply Lemma 3.2.3 to r′ to

obtain a condition r in which every small element in πqn is made isolated

and every isolated element in πqn is made large. As in Case 1, r is the

desired condition. In particular, ar makes x and y both large, so ΨE

contains two incomparable large elements.

To conclude, note that the extension r was found computably. Indeed, the search

for each Fi must succeed and we can computably extend any condition to conduct
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this search. For any condition p, we may bound the number of parallel conditions

considered by fixing a maximum stabilization point, so setting the correct limit

behaviors was also computable. Apply Lemma 3.2.2 to obtain an infinite computable

stable poset G extending r with no infinite computable chain or infinite computable

antichain. Hence ΦG is an ω-ordered stable poset containing an infinite antichain. In

particular ΦG has an infinite antichain E ∪X with E < X. By construction, ΨE∪X

contains two elements x and y. If x and y are comparable in G, then one of these

elements is isolated. If x and y are incomparable in G, then one of these elements is

small if G is of the small type, or one is large if G is of the large type. Either way,

ΨE∪X is not an infinite chain or infinite antichain in G. This contradicts the initial

assumption that Φ and Ψ witness SCAC ≤sW SCACord and the proof is complete.

Corollary 3.2.6. SCAC 6≤W SCACord

In view of Corollary 3.1.12, we also obtain the following as mentioned above.

Corollary 3.2.7. The principle SCAC is not Weihrauch equivalent to any of the

following principles: SCACsmall, SCAClarge, and SCACtype.

3.3 Strong computable reducibility and SCACord

We now turn our attention to strong computable reducibility. Specifically, we show

that SCAC 6≤sc SCAC
ord. In the previous section, we have shown that for each fixed

pair of functionals Φ and Ψ, we can computably build a sufficiently large finite poset π

which ensures sufficiently large chains and antichains in Φπ to diagonalize Ψ with. In a

computable reduction, we are concerned with any stable ω-ordered poset computable

from our instance G of SCAC. Thus, we must diagonalize ΦG for every functional Φ
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simultaneously. This means we can not reliably find fresh pairs (x, y) to diagonalize

some collection of finite chains for a given forward functional. While trying to find a

pair to diagonalize some finite chain in Φπ
0 say, we may repeatedly require that pair to

diagonalize finite chains in other instances Φπ
i .

To show SCAC is not strongly-computably reducible to SCACord, we require a new

approach. The idea is to exploit the local structure of an ω-ordered poset. In our

instance G = (ω,≤G) of SCAC, we may freely set x <G y or y <G x regardless of the

order of x and y in ω. So we seek to establish a situation in which the order of a pair

(x, y) in G determines the order of some related pair (a, b) in ΦG. We can then trap

ΦG into failing to be ω-ordered by forcing b <ΦG a when a < b. In this way, the core

combinatorial difference in SCAC and SCACord is formally revealed. Of course, if there

is a relatively simple solution in ΦG from which we can avoid computations, we will

do so.

Contrast this with the construction in section 3.2, which exploited the global

structure of an ω-ordered poset. Namely, that any stable ω-ordered poset must be of

the small type. Here, we will obtain that even SCACsmall 6≤sc SCAC
ord.

While the basic idea is to force some b > a to be below a in the order ≤ΦG , creating

this situation will require intricate machinery. As in the previous result, the stable

poset G = (ω,≤G) will be constructed using the forcing notion P with G =
⋃
n π

pn for

a sequence 〈pn〉n∈ω of P-conditions. However, in this construction, G will be far from

computable. Instead we must take G sufficiently generic. This is because we will also

construct a countable family of sets D each of which (when joined with G) will be

unable to compute an infinite chain or infinite antichain in G. The next lemma shows

that we may ensure G has this property.
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Lemma 3.3.1. There is an n such that for any set R, if G is the poset resulting from

a Σ0
n(R)-generic filter in P, then G contains no (G⊕R)-computable solution.

Proof. Fix a set R and functional Γ. Let W be the set of P conditions that force one

of the following:

• The set defined by ΓG⊕R is finite.

• There are two elements x, y ∈ ΓG⊕R such that x is isolated in G and y is either

small or large in G.

Clearly W is uniformly arithmetic in R. So there is some n such that W is Σ0
n(R).

It remains to show that W is dense in P. To see this, let p be any condition in P.

Either there is a q ≤P p forcing ΓG⊕R to define a finite set, in which case q ∈ W , or p

forces that ΓG⊕R(x) ↓= 1 for infinitely many x. In the latter case, there is a condition

r ≤P p and two numbers x, y > |πp| such that Γπ
r⊕R(x) ↓= Γπ

r⊕R(y) ↓= 1. As the

limit behavior of x and y does not effect the local structure of πr, we can further

assume without loss of generality that ar(x) = (I, t0) and ar(y) = (S, t1) for some t0

and t1. Thus r ∈ W and the proof is complete.

For each valid forward functional Φ that sends stable posets G to stable ω-ordered

posets ΦG, we define two infinite sets CΦ and AΦ that are respectively a chain and

antichain in ΦG. The goal will be to ensure at least one of these sets cannot compute

a solution of G. That is, for some X ∈ {CΦ, AΦ} we have that ΨX is not an infinite

chain or antichain in G for any functional Ψ. If this proves impossible, we will obtain a

suitable set R to add to D and in this way diagonalize Φ for any backward functional

Ψ. One of these two approaches must succeed, or else we find ourselves able to show

that some pair a < b has b <ΦG a.



66

The construction will handle one triple of functionals (Φ,Ψ0,Ψ1) at a time. The

first, Φ, will be the forward functional giving us an stable ω-ordered poset ΦG. The

latter two will be treated as potential backwards functionals in a computable reduction

involving the instance ΦG. We will seek to ensure at least one of them fails to render a

solution to our instance G. This will be done by either forcing ΨCΦ
0 or ΨAΦ

1 to be a set

which cannot be a solution of G (e.g., because it is finite or contains both small and

incomparable elements). We call accomplishing the first task “making progress on the

chain” and accomplishing the second task “making progress on the antichain.” It will

suffice to make progress on only one of theses sets for each triple (Φ,Ψ0,Ψ1). This

follows from Lachlan’s Disjunction (Proposition 3.3.2) with P(X) being the predicate

which says X is not an infinite chain or antichain in G. If we always make progress

on the chain or make progress on the antichain, in the end, one of CΦ or AΦ will not

compute a solution of G via any functional Ψ.

Proposition 3.3.2 (Lachlan’s Disjunction). Given sets C and A, let P be a property

of sets. If for any pair of functionals (Ψ0,Ψ1), we have P(ΨC
0 ) or P(ΨA

1 ) then for

some X ∈ {C,A} we have P(ΨX) for all functionals Ψ.

Proof. The contrapositive is a tautology. Fix C and A. If there are functionals Ψ0

and Ψ1 such that P (ΨC
0 ) does not hold and P (ΨA

1 ) does not hold, then there is a pair

of functionals, namely (Ψ0,Ψ1), such that both P (ΨC
0 ) and P (ΨA

1 ) fail to hold.

The bulk of technical work will arise in finding appropriate finite extensions of

initial segments of CΦ and AΦ. Call these initial segments C and A. To make

progress on the chain, we will to need find a finite set F such that ΨC∪F
0 presents a

diagonalization opportunity against being solution to G. If this fails, we will attempt

to make progress on the antichain and find a similar finite set F for which ΨA∪F
1 can
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be prevented from forming a solution to G. We conduct these searches symmetrically,

beginning first with the chain C, before repeating the search in an attempt to extend

A. The key step will be to gain leverage on the global structure of ΦG after each failed

search. When both searches fail, we will gain total control on the limit behavior of a

particular set of elements in ΦG and become able to trap ΦG from being both stable

and ω-ordered as mentioned above.

To conduct each search, we rely on a technique known as tree labeling. This will

be the tool by which we gain control over the limit behavior of elements in ΦG. This

framework was first introduced in [6], and subsequently applied in [7] and [21]. The

rough idea is to collect all potential extensions of a Mathias condition (E, I) that

present a diagonalization opportunity against some functional ∆. That is, we organize

all finite sets F ⊆ I which have ∆E∪F (w) ↓= 1 for some sufficiently large w that has

yet to be committed in the construction. The formal definition of this technique is

given next.

Definition 3.3.3. For strings, α, β ∈ ωω, we let a# abbreviate α � |α| − 1 and

α ∗ β denote the concatenation of α and β. For any x ∈ ω, we let α ∗ x = α ∗ 〈x〉.

Thus (α ∗ x)# = α. If T ⊆ ω<ω is a tree, then for any α ∈ T , we call the set

R = {x ∈ ω : α ∗ x ∈ T} the row below α.

Definition 3.3.4. The extension tree T (E, I,∆, n) for a given a Mathias condition

(E, I), Turing functional ∆, and n ∈ ω is defined as follows: λ ∈ T (E, I,∆, n) and

α ∈ T (E, I,∆, n) if α is a strictly increasing sequence of elements in I such that

(∀F ⊆ ran(α#))(∀w ≥ n)(∆E∪F (w) ' 0).

Notice T (E, I,∆, n) is clearly closed under prefixes and thus is a subtree of I<ω.
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For our purposes, we only consider functionals ∆ with range contained in {0, 1}. The

key properties of the extension tree are summarized in the following lemma (which

appears as Lemma 3.2 of [7]).

Lemma 3.3.5. The tree T = T (E, I,∆, n) has the following properties

1. If T has an infinite path f , then I ′ = ran(f) ⊆ I satisfies

(∀F ⊆ I ′)(∀w ≥ n)(∆E∪F (w) ' 0).

2. If α ∈ T is not terminal, then for all x ∈ I such that x > ran(α), α ∗ x ∈ T .

3. If α ∈ T is terminal, then there is a finite set F ⊆ α such that

(∃w ≥ n)(∆E∪F (w) = 1).

4. There is some w ≥ n with ∆E(w) = 1 if and only if T (E, I, δ, n) = {λ}.

Proof. 1. Suppose not. Then there is a set F ⊆ I ′ and w witnessing ∆E∪F (w) ↓= 1.

Without loss of generality, assume F is finite. Let α ≺ f be such that F ⊆

ran(α#). By construction, α 6∈ T , a contradiction.

2. If α ∈ T is non-terminal, then there is some β ∈ T such that β# = α. So every

F ⊆ ran(α) is such that ∆E∪F (w) ' 0 for all w ≥ n. Thus for every x ∈ I with

x > ran(α), α ∗ x ∈ T because α ∗ x is increasing and (α ∗ x)# = α.

3. If α ∈ T is terminal, then for all x ∈ I with x > ran(α), (α ∗ x) 6∈ T . Thus, as

(α ∗ x)# = α, there are witnesses F ⊆ ran(α) and w ≥ n with ∆F∪N(w) ↓= 1.
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4. For the if direction, note that if T = {λ}, then λ is terminal in T and the

statement follows from item 3. For the only if direction, notice α ∈ T and α 6= λ

implies there are no finite sets F ⊆ ran(α#) such that ∆E∪F (w) = 1 for some

w ≥ n. But this occurs when F = ∅. Thus if α 6= λ, then α 6∈ T . Consequently,

T = {λ}.

If T (E, I,∆, n) is well-founded then we may extend every α ∈ T to a terminal

node β which has a witness w ≥ n to the statement

∃F ⊆ ran(β)(∆E∪F (w) ↓= 1).

We call the least such witness w the label of β, denoted lb(β), and use these to label

every node in the tree.

Definition 3.3.6. Suppose an extension tree T = T (E, I,∆, n) is well-founded.

Beginning with the terminal nodes of T , we recursively define a function lb : T →

ω ∪ {∞} assigning to each α ∈ T a label lb(α). If α ∈ T is terminal, there is some

w ≥ n and F ⊆ ran(α) such that ∆E∪F (w) = 1. Let lb(α) be the least such witness

w. If α ∈ T is not terminal, assume recursively that lb(α ∗ x) is defined for all x ∈ I

with x > ran(α). If there is a number w such that lb(α ∗ x) = w for infinitely many x,

let lb(α) be the least such w. Otherwise, let lb(α) = ∞. We call lb a labeling of T

and say lb(α) is finite if lb(α) ∈ ω.

Note the label of lb(α) is finite if and only if infinitely many immediate successors

of α share this same label. If lb(α) = ∞ then either infinitely many immediate

successors of α share this label or for any successor α ∗ x ∈ T , the set {α ∗ y ∈ T :



70

lb(α ∗ y) = lb(α ∗ x)} is finite. We prune T to retain only this information: the labeled

subtree of T is defined so that the immediate successors of any node will either all

share the same label, or each have a distinct finite label.

Definition 3.3.7. If T = T (E, I,∆, n) is a well-founded extension tree with labeling

lb, we define the labeled subtree TL of T recursively as follows. Place λ ∈ TL. Now,

assume α ∈ TL. If lb(α) is finite, place α∗x ∈ TL for all x such that lb(α∗x) = lb(α).

If lb(α) =∞ and infinitely many immediate successors of α have label ∞, place each

such successor into TL. Otherwise, lb(α) = ∞ and there are infinitely many finite

labels w such that lb(α ∗ x) = w for some α ∗ x ∈ T . In this case, for each such label

w place α ∗ x into TL if x is least such that lb(α ∗ x) = w.

Note that if lb is a labeling of an extension tree T , then its restriction to the

labeled subtree TL is a labeling of TL. When the domain of lb is clear from context,

we will use lb to refer to either the labeling of T or TL.

The utility of this framework reveals itself when ∆ is treated as a backward

functional in a potential (strong) computable reduction. If lb(λ) = w, the idea is to

continue our construction in such a way that w will prevent ∆X from being a solution

to the original instance. Here X is any infinite set compatible with the Mathias

condition (E, I). For example, if ∆E is constructing a chain in our stable poset, we

may make w isolated to prevent ∆X from being a solution. To force w ∈ ∆X we

search for a terminal string α ∈ TL. Since it must also have label w, there will be a

set F ⊆ ran(α) such that the Mathias condition (E ∪ F, {x ∈ I : x > F}) will force

w ∈ ∆X for any compatible X. We then will have diagonalized ∆ in the construction.

The challenge will be finding α ∈ TL such that E ∪ ran(α) has the desired structure

in the original instance (e.g., E ∪ ran(α) is a chain of small elements). If our instance
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involves a stable limit behavior (e.g., being small or isolated), then we will be able to

find some one-point extension of a given α ∈ TL as the row below α is infinite. At

some point, the relationship of the elements in ran(α) will have stabilized with respect

to sufficiently large elements in the row below α. So long as we find a non-terminal

α ∈ TL with a finite label, this approach will succeed. If instead, lb(λ) =∞ and our

search through TL takes us to a pre-leaf α with lb(α) = ∞, then the labels of the

successors α ∗ x will all be distinct and finite. In this case, we may not be able to

find a suitable x and label w to simultaneously extend our condition via ran(α ∗ x)

while diagonalizing ∆ with w. This will only occur if the limit behavior of w directly

determines the limit behavior of x, and in this way, we will have gained some control

over the global structure of the computed instance in the reduction. Of course, at any

point in this search, we may simply find an infinite set R ⊆ I which will be suitable

to add to D.

We are now ready to prove that there is a stable poset G witnessing that SCAC 6≤sc

SCACord. To summarize our approach, for every triple of functionals (Φ,Ψ0,Ψ1) we

seek to build an infinite chain CΦ and infinite chain AΦ in ΦG such that either ΨCΦ
0

is not a solution of G or ΨAΦ
1 is not a solution of G. We will first attempt to make

progress on the chain CΦ, and then attempt to make progress on the antichain AΦ. If

both attempts fail, we will encounter a suitable infinite set R to add to a collection D.

On other stages of the construction, we will ensure G is sufficiently generic over the

elements of D so that G has no (G⊕R)-computable solutions for these R ∈ D. We

will conclude by showing that if progress cannot be made on the chain or antichain,

and no such R can be found, then ΦG is either not stable or not ω-ordered. The latter

will be done by exemplifying a pair a <ω b with b <ΦG a.
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Theorem 3.3.8. There is a stable poset G and a collection of infinite sets D such

that for any R ∈ D, no (G ⊕ R)-computable infinite set is a chain or antichain of

G. Moreover, any stable ω-ordered poset Ĝ computable from G has either: an infinite

chain or infinite antichain computable in (G ⊕ R) for some R ∈ D, or an infinite

chain or infinite antichain that computes no infinite chain or infinite antichain in G.

Proof. To construct the required objects we build the following:

• a sequence p0 ≤P p1 ≤P · · · of P-conditions;

• two sequences of finite sets CΦ,0 ⊆ CΦ,1 ⊆ · · · , and AΦ,0 ⊆ AΦ,1 ⊆ · · · for each

functional Φ;

• a decreasing sequence of infinite sets R0 ⊇ R1 ⊇ · · · such that CΦ,s < Rs and

AΦ,s < Rs for all s and Φ; and

• an increasing sequence of finite families D0 ⊆ D1 ⊆ · · · of infinite subsets of ω.

In the end G =
⋃
n∈ω π

pn , CΦ =
⋃
sCΦ,s, and AΦ =

⋃
sAΦ,s, for each functional Φ,

and D =
⋃
sDs. We need to make G sufficiently generic over D, and if possible, to

ensure CΦ and AΦ are respectively an infinite chain and infinite antichain in ΦG, one

of which computes no infinite chain or infinite antichain in G. Toward these ends, we

satisfy the following requirements for each s ∈ ω and all Turing functionals Φ, Ψ0 and

Ψ1.

Gs: G is sufficiently R-generic for every R ∈ Ds.

DΦ,Ψ0,Ψ1 : If ΦG is an stable ω-ordered poset, then either ΦG has an infinite

chain or infinite antichain computable in (G⊕ R) for some R ∈ D,

or there is an infinite chain CΦ and infinite antichain AΦ in ΦG such
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that one of ΨCΦ
0 or ΨAΦ

1 is not an infinite chain or infinite antichain

in G.

Distribute the stages of the construction in such a way so that each G requirement

is addressed infinitely often and each D requirement is addressed once. By Lemma

3.3.1, the G requirements will ensure that G has no infinite (G⊕R)-computable chain

or antichain for each R ∈ D. By Lachlan’s Disjunction (Proposition 3.3.2), the D

requirements will ensure that for each Φ, one of CΦ or AΦ diagonalizes ΦG with respect

to any backward functional Ψ.

Construction. To begin, let p0 ∈ P be any condition such that ap : |πp| →

{S, I}× (ω � |πp|+ 1). So G will be a stable poset of the small type. Let R0 = D0 = ∅

and let CΦ,0 = AΦ,0 = ∅ for all functionals Φ. Suppose we are at stage s and given

ps, CΦ,s, AΦ,s for all Φ, and Ds. Assume inductively that if CΦ,s or AΦ,s is nonempty

for some Φ, then ps forces ΦG is an stable ω-ordered poset and that CΦ,s and AΦ,s are

respectively a chain of small elements and an antichain of isolated elements in ΦG. At

the conclusion of the stage, if any of ps+1, CΦ,s+1, AΦ,s+1, Rs+1, and Ds+1 have not

been explicitly defined, let them equal ps, CΦ,s, AΦ,s, Rs, and Ds respectively.

G requirements. These are satisfied in a systematic and straightforward way. Let

n be sufficiently large to satisfy Lemma 3.3.1. Suppose s > t is the 〈`,m〉th stage

dedicated to Gt. If ` > |Ds|, do nothing. Else, let R be the `th set in Ds and W be

the mth Σ0
n(R) set. If G has an extension q ∈ W , set ps+1 = q and proceed to the

next stage. Otherwise, do nothing.

D requirements. Suppose stage s is dedicated to requirement DΦ,Ψ0,Ψ1 . We begin

with a few initial extensions of ps, CΦ,s, AΦ,s and Rs before attempting to make
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progress on the chain CΦ,s with an extension tree. If this fails, we repeat this search

with a second extension tree to make progress on AΦ,s. Throughout this process, if at

any point we encounter an infinite set R which will contain only finitely many small or

finitely many isolated elements of ΦG, we add R to Ds and proceed to the next stage.

At the end, if each of these approaches fails, it will contradict that ΦG is ω-ordered.

Initialization.

Begin by extending ps if necessary to a condition forcing that ΦG is a stable

ω-ordered poset. If no such extension exists, DΦ,Ψ0,Ψ1 is vacuously satisfied and we

proceed to the next stage. Next, search for an extension q forcing either of the following

statements:

• The number of small elements in ΦG ∩Rs is finite.

• The number of isolated elements in ΦG ∩Rs is finite.

If either holds, then there is set D cofinite in Rs such that D will contain only small or

only isolated elements of ΦG. Thus D can be computably thinned to an infinite chain

or infinite antichain in ΦG. Hence D is an (Rs ⊕ P )-computable set which computes

an infinite chain or antichain of ΦG. So we set Ds+1 = Ds ∪ {Rs} and ps+1 = q and

proceed to the next stage, having satisfied DΦ,Ψ0,Ψ1 .

If there is no such condition, we conclude that Rs will contain infinitely many small

elements and infinitely many isolated elements of ΦG. Thus move to an extension

q ≤P ps and a triple of sets (C,A, J) such that

• CΦ,s ⊆ C ⊆ CΦ,s ∪Rs and C is a finite chain in Φπq with |CΦ,s| < |C|;

• AΦ,s ⊆ A ⊆ AΦ,s ∪Rs and A is a finite antichain in Φπq with |AΦ,s| < |A|;
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• J is the infinite set {x ∈ Rs : x > A ∧ x > C}; and

• q forces that each x ∈ C is small in ΦG, each x ∈ A is isolated in ΦG, and for all

x > |πq|, C ∪ {x} and A ∪ {x} are respectively a chain and antichain in ΦG.

Note we have extended CΦ,s and AΦ,s by a finite amount, ensuring that CΦ and AΦ

will be infinite. Additionally, choose C and A large enough that ΨC
0 and ΨA

1 have

size at least two. If this is not possible, then one of ΨCΦ
0 or ΨAΦ

1 must be finite. In

this case, we set CΦ,s+1 = C, AΦ,s+1 = A and Rs+1 = J and proceed to the next

stage having made progress on at least one of the chain or the antichain and thereby

satisfied DΦ,Ψ0,Ψ1 .

Otherwise, we seek to extend ps, C, A and J to ps+1, CΦ,s+1, AΦ,s+1 and Rs+1 via

tree labeling. We first attempt to make progress on C with an extension tree for Ψ0.

We then attempt to make progress on A with an extension tree for Ψ1. Throughout

both attempts, if at any point an infinite set R is found which will only contain finitely

many small or finitely many isolated elements of ΦG, then we will proceed to the

next stage after setting Ds+1 = Ds ∪ {R}. Unless explicitly defined otherwise, we let

ps+1 = ps, CΦ,s+1 = C, AΦ,s+1 = A, and Rs+1 = J .

Making progress on the chain.

Construct the extension tree T (C, J,Ψ0, |πq|). If this tree has a path f , let

Rs+1 = ran(f) and proceed to the next stage. Note this satisfies DΦ,Ψ0,Ψ1 as the set

defined by ΨCΦ
0 will be finite. Indeed, for sufficiently large n the oracle use of ΨCΦ

0 (n)

is contained in C ∪ F for some finite F ⊆ ran(f) and the definition of the extension

tree ensures ΨC∪F
0 (n) ' 0.

If T (C, J,Ψ0, |πq|) is well-founded, construct a labeling lb : T → ω ∪ {∞} and

the corresponding labeled subtree TLC . We aim to determine a finite sequence of P
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conditions q ≥P q0 ≥P q1 ≥P · · · ≤P ps+1 alongside a sequence of strings α0 � α1 �

· · · � αn � α in TLC in which α is terminal and has an appropriate F ⊆ ran(αn) to

extend C to CΦ,s+1.

Let α0 = λ. If lb(α0) = w, find an extension q0 ≤P q such that aq0(w) = (I, |πq0|)

if ΨC
0 contains two comparable elements in πq or aq0(w) = (S, |πq0|) otherwise. If

lb(α0) = ∞, set q0 = q. Assume we have obtained a condition qn and nonterminal

string αn ∈ TLC such that ran(αn) is a chain in Φπqn and qn forces each x ∈ ran(αn)

small in ΦG. To extend αn, we consider two cases depending on whether or not the

label of αn agrees with the label of each of its successors.

Case 1: lb(αn) = lb(αn ∗x) for each x with α∗x ∈ TLC . As each element of ran(αn)

is forced small, there will be some t such that for all x > t with αn ∗ x ∈ TLC , the set

ran(αn) ∪ {x} will be a chain in ΦG. Search for a condition qn+1 ≤P qn and x such

that αn ∗ x ∈ TLC , ran(αn ∗ x) is a chain in Φπqn+1
, and qn+1 forces x small in ΦG. Let

αm+1 = αn ∗ x and proceed. If there is no such condition qn+1, then qn forces that the

row below αn, R = {x : αn ∗ x ∈ TLC }, will contain only finitely many small elements

of ΦG. So add R to Ds, set ps+1 = qn, and proceed to the next stage having satisfied

the requirement.

Case 2: lb(αn) 6= lb(αn ∗ x) for some αn ∗ x ∈ TLC . Notice this case can only occur

if lb(αn) =∞ and each of its immediate successors αn ∗ x have distinct finite labels.

Note again that any condition qn+1 ≤P qn will guarantee ran(αn ∗ x) is a chain in ΦG

for sufficiently large x. Search for a condition qn+1 ≤P qn, and an x and w such that

αn ∗ x ∈ TLC , lb(αn ∗ x) = w, ran(αn ∗ x) is a chain in Φπqn+1
, and that either

• qn+1 forces x small in ΦG with aqn+1(w) = (I, |πqn+1|) if ΨC
0 has two comparable

elements in πq; or
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• qn+1 forces x small in ΦG with aqn+1(w) = (S, |πqn+1 |) if ΨC
0 lacks two comparable

elements in πq.

Let αn+1 = αn ∗ x and proceed. If no such condition exists, let

RC = {x : αn ∗ x ∈ TLC ∧ ran(αn ∗ x) will be a chain in ΦG ∧ lb(α ∗ x) > |πqn|}

and set RL
C = {〈x,w〉 : x ∈ RC ∧ lb(αn ∗ x) = w}. Note RC is an infinite subset of the

row below αn. For every 〈x,w〉 ∈ RL
C , if q′ ≤P qn and aq

′
assigns the required limit

behavior to w (depending on whether or not ΨC
0 has two comparable elements in πq)

then q′ cannot force x small in ΦG. Hence, q′ must force x isolated in ΦG. In this case,

we have failed to extend αn but have gained some control on the limit behavior of

x ∈ RC . So we must attempt to make progress on the antichain.

If instead we successfully extended α0 � · · · � αn to a terminal string α ∈ TLA

at condition qn, then lb(α) is finite, say with value w. In this case there is some

F ⊆ ran(α) such that ΨC∪F
0 (w) ↓= 1, and qn forces that every element in the chain

C ∪ F is small in ΦG. Moreover, qn will make w isolated in G if ΨC∪F
0 contains two

comparable elements of πq, and otherwise make w small. Either way, any infinite

chain X extending C ∪F in ΦG will have that ΨX
0 is not an infinite chain or antichain

of G. We set ps+1 = qn, CΦ,s+1 = C ∪ F and Rs+1 = {x ∈ J : x > C ∪ F ∪ A} and

proceed to the next stage, having made progress on the chain.

If at any point, we fail to extend some αn then we either found a set R to add to

Ds or we are at a condition qn with the sets RC and RL
C . With newfound leverage, we

repeat the search in an extension tree for the antichain A.

Making progress on the antichain.

Construct the extension tree T (A,RC ,Ψ1, |πqn|). As with the previous extension
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tree, if T (A,RC ,Ψ1, |πqn|) has an infinite path f , set ps+1 = qn, and Rs+1 = ran(f)

and proceed to the next stage. Otherwise, T (A,RC ,Ψ1, |πqn|) is well-founded. Form a

labeling lb of T (A,RC ,Ψ1, |πqn|) and the corresponding labeled subtree TLA . We again

aim to construct a finite sequence of conditions qn ≥P qn+1 ≥P≥P ps+1 and a terminal

string α ∈ TLA containing a suitable F ⊆ ran(α) with which to extend A to AΦ,s+1.

We build a sequence α1 � α2 � · · · � αm � α ∈ TLA as above while highlighting

the differences. Let α1 = λ. If lb(α1) = w, move to an extension qn+1 ≤P qn with

aqn+1(w) = (I, |πqn+1|) if ΨA
1 contains two comparable elements in πq, or aqn+1(w) =

(S, |πqn+1|) otherwise. If lb(α0) = ∞, set qn+1 = qn. Assume we have constructed

αm and found condition qn+m such that ran(αm) is an antichain in Φπqn+m
and qn+m

forces each element in ran(αm) isolated in ΦG. We again consider two cases to extend

αm by one element.

Case 1: lb(αm) = lb(αm ∗ x) for all x with αm ∗ x ∈ TLA . Since the elements of

ran(αm) are forced isolated in ΦG, we conclude ran(α ∗ x) will be an antichain in

ΦG for sufficiently large x with α ∗ x ∈ TLA . Thus, if there is an x and condition

qn+m+1 with α ∗ x ∈ TLA , ran(α ∗ x) is an antichain in Φπqn+m+1
, and such that qn+m+1

forces x isolated in ΦG, let αm+1 = αm ∗ x and proceed. Otherwise, qn+m forces the

row R below αm in TLA to contain only finitely many isolated elements of ΦG. So

we set ps = qn+m, Rs+1 = RC , and Ds+1 = Ds ∪ {R} and conclude this stage of the

construction.

Case 2: lb(αm) 6= lb(αm ∗ x) for some αm ∗ x ∈ TLC . Then lb(αm) = ∞ and for

sufficiently large x, qn+m forces ran(αm ∗ x) to be an antichain in ΦG. Search for a

condition qn+m+1 ≤P qn+m, and an x and w such that αm ∗ x ∈ TLA , lb(αm ∗ x) = w,

ran(αm ∗ x) is an antichain in Φπqn+m+1
, and that either
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• qn+m+1 forces x isolated in ΦG with aqn+m+1(w) = (I, |πqn+m+1|) if ΨA
1 has two

comparable elements in πq; or

• qn+m+1 forces x isolated in ΦG with aqn+m+1(w) = (S, |πqn+m+1 |) if ΨA
1 lacks two

comparable elements in πq.

Let αm+1 = αm ∗ x and proceed. If no such condition exists, let

RA = {x : αm ∗x ∈ TLC ∧ran(αm ∗x) will be an antichain in ΦG∧ lb(α∗x) > |πqn+m|}.

and set RL
A = {〈x,w〉 : x ∈ RA ∧ lb(α ∗ x) = w}. As before RA is an infinite subset of

the row below αm. And similar to RL
C , we have that for any 〈x,w〉 ∈ RL

A, if q′ ≤P qn+m

and assigns the correct limit behavior to w, then q′ forces x small in ΦG. In this

situation, we will make progress on the antichain by finding a finite set F ⊆ RA to

extend A.

If we successfully extended α1 � · · · � αm to a terminal string α ∈ TLA at

condition qn+m, then lb(α) = w for some w. There is a set F ⊆ ran(α) such that

ΨA∪F
1 (w) ↓= 1. Furthermore, qn+m forces A∪F to be an antichain of isolated elements

in ΦG and assigns w the correct limit behavior to ensure any infinite antichain X

extending A ∪ F does not define via Ψ1 an infinite chain or antichain of G. Thus

we have made progress on the antichain and set ps+1 = qn+m, AΦ,s+1 = A ∪ F , and

Rs+1 = {x ∈ RC : x > A ∪ F ∪ C} before proceeding to the next stage.

If we failed to extend some αm, then we either found a set R to add to Ds

or we are at condition qn+m with the sets RA and RL
A as well as the sets RC and

RL
C . Search for a finite set F ⊆ RA such that ΨA∪F

1 (a) ↓= ΨA∪F
1 (b) ↓= 1 for two

fresh elements a, b > |πqn+m|. If we find such an F , a, and b, we claim there is an
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extension q′ ≤P qn+m which forces A ∪ F to be an antichain of isolated elements in

ΦG and guarantees that ΨA∪F
1 contains two incomparable but small elements or two

comparable but isolated elements of G. Thus we set ps+1 = q′, AΦ,s+1 = A ∪ F , and

Rs+1 = {x ∈ RA : x > A ∪ F ∪ C}, and proceed to the next stage having made

progress on the antichain. If there is no such set F ⊆ RA, then set Rs+1 = RA and

ps+1 = qn+m. This guarantees that any infinite antichain X extending A will have ΨX
1

finite so we make progress on the antichain in this case as well. This concludes the

construction.

It remains to prove the claim and verify the construction. We first prove the claim.

The idea is to show that if such a condition q′ does not exist, then ΦG is not ω-ordered.

Claim. There is a condition q′ ≤P qn+m which forces that A ∪ F is an antichain of

isolated elements in ΦG, and there are two elements a, b ∈ ΨA∪F
1 such that either

1. {a, b} is an antichain in πq
′
, and aq

′
sets both a and b to be small, or

2. {a, b} is a chain in πq
′
, and aq

′
sets both a and b to be isolated.

Proof of the claim. Recall q ≤P qn+m forces that A contains only isolated elements of

ΦG and that for any x > |πq|, A∪{x} is an antichain in ΦG. So it suffices to show the

existence of a condition q′ ≤P qn+m which makes F an antichain of isolated elements

in ΦG and for which one of statements 1 or 2 hold.

To begin, note that RA ⊆ RC by construction and moreover, RL
A ⊆ RL

C . If not,

then there is an x ∈ RA such that (x,w) ∈ RL
A and (x,w′) ∈ RL

C . Extending qn+m to a

condition in which w and w′ have the correct limit behaviors forces x to be isolated by

its membership in RC and small by its membership in RA, a contradiction. Thus we

have complete control over the limit behavior of the elements of F as F ⊆ RA ⊆ RC .
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To elaborate, for each x ∈ F there is a w such that 〈x,w〉 ∈ RL
A. Any condition

r ≤P qn+m determines whether x will be small or isolated in ΦG by the limit behavior

it assigns w (depending on the structure of ΨC
0 and ΨA

1 ). So we may ensure the

elements of F are isolated via the labels of its elements. Unless otherwise mentioned,

we now only consider labels w corresponding to x ∈ F .

The key fact to notice is that for any condition r, we may freely adjust the limit

behaviors as needed of a, b and the labels w by using a parallel condition r′. Since the

limit behaviors ar assigns to a, b and each w have no effect on the local structure of

πr, we may take a parallel condition r′ assigning limit behavior via ar
′

in the way we

need. This will not affect the local structure of F as πr = πr
′

so Φπr = Φπr
′
. Thus, if

no q′ exists, we can conclude that this failure is not witnessed by limit behavior but

instead locally. For example, if statement 1 fails this would mean that if {a, b} is an

antichain in G, then F cannot itself be an antichain in ΦG.

We will now show by contradiction that either statement 1 or 2 must hold. Since

the way each label w affects the corresponding element in F depends on the structure

of ΨC
0 and ΨA

1 , we have four cases to consider. The concern will be when a and b are

themselves labels of F .

Case 1: ΨC
0 and ΨA

1 both have two comparable elements in πq. Here if

〈x,w〉 ∈ RL
A, then any r ≤P qn+m with w isolated forces x both small and

isolated in ΦG. So case 1 cannot obtain.

Case 2: ΨC
0 and ΨA

1 both lack two comparable elements in πq. Here if

〈x,w〉 ∈ RL
A, then any r ≤P qn+m with w small forces x both small and

isolated in ΦG. So case 2 cannot obtain.

Case 3: ΨC
0 lacks two comparable elements in πq but ΨA

1 does not. Here
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if 〈x,w〉 ∈ RL
A, then any r ≤P qn+m which has w isolated forces x small in

ΦG because x ∈ RA and any r ≤P qn+m with w small forces x isolated in

ΦG because x ∈ RC .

In this case, we show statement 1 must hold. Suppose not: that is, that

there is no condition q′ which forces F to be an antichain of isolated

elements in ΦG while having {a, b} a chain of isolated elements in πq
′
. As

mentioned above, this cannot occur due to limit behavior, but instead

happens due to local behavior. Specifically, any condition r ≤P qn+m which

has {a, b} an antichain in πr forces x <ΦG y for some x, y ∈ F . Choose

a condition r which makes the label of x small, forcing x isolated, and

makes the label of y isolated, forcing y small. Note that as a |πr b, there

are no concerns over whether or not a and b label x and y. As r forces

x <ΦG y with y small, x must be small in ΦG. Then x will be both small

and isolated, a contradiction

Case 4: ΨC
0 has two comparable elements in πq but ΨA

1 does not. Here if

〈x,w〉 ∈ RL
A, then any r ≤P qn+m which has w isolated forces x isolated in

ΦG because x ∈ RC and any r ≤P qn+m with w small forces x small in ΦG

because x ∈ RA.

Here we show statement 2 must hold. Suppose not: then any condition

r ≤P qm setting a <G b forces x <ΦG y for some x, y ∈ F . From this, we

conclude 〈x, a〉, 〈y, b〉 ∈ RL
A. That is, a and b are the labels corresponding

to x and y. To see this, note first that if 〈x, b〉, 〈y, a〉 ∈ RL
A, then any

condition setting b isolated and a small, would in turn force x isolated and

y small. But then the fact that x <ΦG y would imply x is also small in
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ΦG, a contradiction. Next suppose b is not the label for y. We can then

force x isolated and y small via their labels, without affecting the limit

behavior of b, and obtain a similar contradiction. Mutatis mutandis, we

have that a is the label for x.

We also note that any condition setting b <G a forces y <ΦG x. This

follows from the structure of TLA since every element in RA corresponds

to a distinct label. Since b <G a forces some w <ΦG z with w, z ∈ F , we

have that b is the label for w and a the label for z. So w = y and z = x.

Summarizing, setting a <G b or b <G a forces x <ΦG y or y <ΦG x

respectively. But ΦG is ω-ordered, so only one of x <ΦG y or y <ΦG x is

valid. Assume it is the former, and move to a condition r ≤P qn+m such

that b <G a. Then r forces that y <ΦG x with x <ω y, contradicting that

ΦG is ω-ordered.

In every case, we show there must be a condition q′ for which statement 1 or 2

holds. This completes the proof of the lemma.

Verification. Let G be the generic poset and D the collection of infinite sets

resulting from the construction. If Φ is a functional such that ΦG is an stable ω-

ordered poset, then either it has a (G ⊕ R)-computable infinite chain or infinite

antichain X for some R ∈ D, or two infinite sets CΦ and AΦ were constructed. In the

first case, as each G -requirement was satisfied, we have by Lemma 3.3.1 that ΨX is

not an infinite chain or infinite antichain of G for any functional Ψ. In the second case,

CΦ and AΦ are respectively a chain and antichain in ΦG. Furthermore, for every pair

of functionals (Ψ0,Ψ1) one of ΨCΦ
0 or ΨAΦ

1 is guaranteed not to be an infinite chain

or infinite antichain of G by the D-requirements. Applying Lachlan’s Disjunction
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(Proposition 3.3.2) yields that for some X ∈ {CΦ, AΦ}, ΨX is not an infinite chain or

infinite antichain of G for any functional Ψ. Thus G is the desired stable poset and D

is the desired collection of infinite sets.

Corollary 3.3.9. SCAC 6≤sc SCAC
ord

Proof. This is witnessed by any stable poset satisfying Theorem 3.3.8.

Note the stable poset G built in the proof of Theorem 3.3.8 is of the small type,

so we obtain SCACsmall 6≤sc SCAC
ord. More generally, we obtain the following in view

of Corollary 3.1.14.

Corollary 3.3.10. The principle SCACord is not strongly computably equivalent to

any of the following principles: SCACsmall, SCAClarge, and SCACtype.



Chapter 4

Determining unique colorability in
graphs and hypergraphs

In this chapter, we extend results of Davis, Hirst, Pardo, and Ransom [3] on proper

k-colorings of hypergraphs. In particular, we initiate the study of unique colorability

in hypergraphs and obtain a sorting principle equivalent to ATR0. We then give

preliminary results from joint work with Jeffry L. Hirst on the unique colorability of

graphs and hypergraphs.

4.1 Proper colorability in hypergraphs

A hypergraph is a pair of sets H = (V,E) with E ⊆ P(V ). Intuitively, V is a set of

vertices and E is a collection of edges each of which contain any number, finite or

infinite, of the vertices. A graph is a hypergraph in which every edge has cardinality 2.

We call two vertices u and v adjacent if u, v ∈ e for some e ∈ E. For our purposes, we

assume V ⊆ N and E ⊆ N×N encodes the countable collection {e0, e1, . . . } of edges by

85
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em = {n : 〈n,m〉 ∈ N}. We also confuse each integer k with the set {0, 1, . . . , k − 1}.

A k-coloring of a graph G = (V,E) is a function c : V → k such that for all

u, v ∈ V , if there is an edge e ∈ E with e = {u, v}, then c(u) 6= c(v). That is, if u

and v are adjacent in G, they have different colors. Now in a hypergraph, there may

be edges of size greater than k, so we allow for a weaker notion of a vertex coloring.

Specifically, we say a function c is a proper k-coloring of a hypergraph H = (V,E)

if c : V → k and c is non-constant on every edge e ∈ E with cardinality greater

than 1. Directly generalizing k-colorings on a graph leads to a strong k-coloring of a

hypergraph, i.e., a coloring c which is injective on every edge e ∈ E.

We say a graph G is k-colorable if there exists a k-coloring of its vertices. We say a

hypergraph H is properly k-colorable if there exists a proper k-coloring of its vertices.

Davis, Hirst, Pardo, and Ransom [3] initiated the study of k-colorability of hyper-

graphs in reverse mathematics. In particular, they proved in RCA0 that for a given k,

determining which hypergraphs in an infinite sequence admit a proper k-coloring is

equivalent to Π1
1-CA0 (see Theorem 6 of [3]). We have shown that in fact, their result

can be modified to obtain a principle equivalent to ATR0 over RCA0. To do this, we

restrict the question of determining proper k-colorability to determining unique proper

k-colorability. Now, as any proper k-coloring defines other distinct proper k-colorings

by permuting the colors, we address only 2-colorings and define the following.

Definition 4.1.1. We say H = 〈V,E〉 has a unique proper 2-coloring f : V → 2 if

and only if any proper 2-coloring g of H satisfies

(∀x ∈ V )f(x) = g(x) ∨ (∀x ∈ V )(f(x) = g(x) + 1 ∨ f(x) + 1 = g(x))

In this case, we call H uniquely properly 2-colorable.
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Theorem 4.1.2. Over RCA0, the following are equivalent

1. ATR0

2. If 〈Hi〉i∈N is a sequence of hypergraph each of which admits at most one proper

2-coloring then there is a function f : N→ 2 such that f(i) = 1 if and only if

Hi has a proper 2-coloring.

Showing that ATR0 suffices to prove (2) amounts to observing that being a proper

2-coloring of a hypergraph H is an arithmetic (over H) property of sets. The reversal

utilizes the formulation of ATR0 in terms of finding what we call uniquely ill-founded

trees in a given sequence 〈Ti〉i∈ω of subtrees of ω<ω. We say a tree T is ill-founded if it

is not well-founded. We say a tree T is uniquely ill-founded if it has exactly one path.

For each tree Ti, we construct a hypergraph Hi via the the methods of Davis, Hirst,

Pardo, and Ransom [3]. This tree Ti will be uniquely ill-founded if and only if Hi is

uniquely properly 2-colorable. We require leaf sets for the construction.

Definition 4.1.3. For a tree T ⊆ ω<ω the set LT = {σ : ∀n(σ ∗ n 6∈ T )} is the leaf

set of T .

For a detailed treatment of trees and their leaf sets in reverse mathematics, see

Hirst [17]. We summarize the key facts.

Naively, LT is Π0
1-definable in T . This is in fact optimal for arbitrary trees as Hirst

[17] showed that over RCA0 finding the leaf set for a given tree is equivalent to ACA0.

However, for certain trees this process is computable in T and thus can be borne out

in RCA0. The following appears in Lemma 5 and Theorem 6 of [17].

Proposition 4.1.4 (RCA0). If T ⊆ ω<ω is a tree then

T+ =
{
τ : (∃σ ∈ T )

(
|σ| = |τ | ∧ (∀n < |σ|)(τ(n) = σ(n) + 1)

)}
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and T ∗ = T+ ∪ {τ ∗ 0 : τ ∈ T+} are also trees and LT ∗ exists. Moreover, T is

well-founded if and only if T ∗ is well-founded.

Proof. Clearly, T+ is computable in T and T ∗ is computable in T so these sets exists.

Since T is closed under initial segments, so is T+ and in turn, so is T ∗.

Note σ ∈ LT ∗ if and only if σ ∈ T ∗ and σ(|σ| − 1) = 0. So LT ∗ is also computable

in T ∗, and thus T .

Finally, f is a path in T if and only if g is a path in T ∗ where for all n, g(n) =

f(n) + 1.

Corollary 4.1.5. Given a sequence of trees 〈Ti〉i∈ω, we may form in RCA0 the sequence

〈T ∗i , LTi〉i∈ω.

This conversion renders additional information in certain principles equivalent to

ATR0 and Π1
1-CA0. For instance, Hirst showed the following among other equivalences

in Theorem 7 of [17].

Lemma 4.1.6. Over RCA0, the following are equivalent:

1. ATR0

2. If 〈Ti〉i∈N is a sequence of trees each with at most one infinite path, then there is

a set Z such that for all i, i ∈ Z if and only if Ti has an infinite path.

3. If 〈Ti, Li〉i∈N is a sequence of trees each with at most one infinite path and Li is

the leaf set of Ti, then there is a set Z such that for all i, i ∈ Z if and only if Ti

has an infinite path.

Proof. This is immediate from Theorem V.5.5 of Simpson [22] combined with Corollary

4.1.5.
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We are now ready to give the construction of a hypergraph H from a tree T ⊆ N<N.

We follow the procedure of Davis, Hirst, Pardo, and Ransom [3], see Theorem 6.

Lemma 4.1.7 (RCA0). Given a tree T ⊆ N<N with leaf set L, there exists a hypergraph

H such that H is properly 2-colorable if and only if T is ill-founded.

Proof. We construct H uniformly from T and L as follows: The vertices of H are

{a0, a1, b0, b1, s} together with vertices labeled σ0 and σ1 for each nonempty sequence

σ ∈ T . The edges of H consist of

• (a0, a1), (a1, s), (b0, b1) and (b1, s),

• (σ0, σ1) for every nonempty σ ∈ T ,

• (σ1, s) if σ is a leaf of T ,

• Eσ = {σ1} ∪ {τ0 : τ ∈ T ∧ τ# = σ} if σ ∈ T is not a leaf, and

• E0 = {a0, b0} ∪ {σ0 : σ ∈ T ∧ |σ| = 1}.

Note RCA0 proves H exists as V and E are computable in T and L.

For the if direction, suppose T has an infinite path f . Denote f � n by fn. Define

c, a proper 2-coloring of H, as follows. Let

c(s) = c(a0) = c(b0) = 1, c(a1) = c(b1) = 0,

c(f i0) = 0, c(f i1) = 1, for all i ∈ N,

c(τ0) = 1 and c(τ1) = 0 for τ 6≺ f.

It is simple to verify by cases that c is a proper 2-coloring: argue individually for each

type of edge in H.
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For the only if direction, suppose c is a proper 2-coloring of the vertices in H.

Without loss of generality, assume c(s) = 0. Then by the first bullet, c(a1) = c(b1) = 1

and c(a0) = c(b0) = 0. By the second bullet, for each σ ∈ T , c(σ0) = c(σ1) ± 1.

Combining this with the third bullet yields that σ ∈ T is a leaf only if c(σ0) = 0. As

a0 and b0 have color 0, the fifth bullet guarantees a σ ∈ T of length 1 with c(σ0) = 1.

Fix this σ and note it is not a leaf of T . As c(σ1) = 0, there must be some immediate

successor τ of σ with c(τ0) = 1 to properly color Eσ. Thus τ is not a leaf in T , and

we may repeat this process to define a infinite path in T .

We are now ready to prove Theorem 4.1.2.

Proof. Suppose we are given a sequence of hypergraphs 〈Hi〉i∈N each of which admits

at most one proper 2-coloring. Working in ATR0, we define a set Z such that i ∈ Z if

and only if Hi admits a proper 2-coloring. By Theorem V.5.2 of Simpson [22] ATR0

proves the scheme

∀i(∃ at most one X)ϕ(i,X)→ ∃Z∀i(i ∈ Z ↔ ∃Xϕ(i,X)),

where ϕ(i,X) is any arithmetical formula in which Z does not occur. Note that X

encoding a proper 2-coloring is arithmetic in H since we can effectively check each

e ∈ E. To see this, consider a map f : V → 2 for a hypergraph H = 〈V,E〉. Then f

is a proper 2-coloring only if

(∀u ∈ V )∀n (u ∈ en → (∃v ∈ en)(f(u) 6= f(v))) .

Thus the formula ϕ(i,X) which says X encodes a proper 2-coloring (and the coloring

obtained by flipping the outputs) of Hi is arithmetic. By assumption each Hi can



91

admit at most one such X, so ATR0 proves the existence of a set Z such that i ∈ Z if

and only if Hi has a proper 2-coloring.

For the reversal let 〈Ti, Li〉i∈N be a sequence of trees in N<N equipped with leaf

sets. By Lemma 4.1.6 it suffices to use item 2 to define the characteristic function of

the set of indices of the ill-founded trees in 〈Ti, Li〉i∈N.

Given the sequence 〈Ti, Li〉i∈N, we may construct a sequence 〈Hi〉 of hypergraphs

as in Lemma 4.1.7 as this procedure is uniform in the tree and leaf set. Moreover, each

Hi has a proper 2-coloring if and only if T has an infinite path and the set of edges

naturally is given as a sequence by lexicographic ordering on strings in Ti. Recall the

vertices of Hi are {a0, a1, b0, b1, s} together with vertices labeled σ0 and σ1 for each

nonempty sequence σ ∈ Ti. The edges of Hi consist of

• (a0, a1), (a1, s), (b0, b1) and (b1, s),

• (σ0, σ1) for every nonempty σ ∈ Ti,

• (σ1, s) if σ is a leaf of Ti,

• Eσ = {σ1} ∪ {τ0 : τ ∈ Ti ∧ τ# = σ} if σ ∈ Ti is not a leaf, and

• E0 = {a0, b0} ∪ {σ0 : σ ∈ Ti ∧ |σ| = 1}.

Claim. For each i ∈ N, Ti has exactly one infinite path if and only if Hi has a unique

proper 2-coloring.

To prove the claim, fix i and let T = Ti and H = Hi. For the forward direction,

suppose T has a unique infinite path. Then H has a proper 2-coloring c : N→ 2. To

show that c is unique, suppose d were a distinct proper 2-coloring of the vertices of H.
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Then c and d satisfy

¬(∀v ∈ H(c(v) = d(v))) ∧ ¬(∀v ∈ H(c(v) 6= d(v))).

Assume c(s) = d(s) = 1 by flipping the colors if necessary.

We show by induction that c = d. Note c(a1) = c(b1) = 0, and so c(a0) = c(b0) = 1.

To properly color E0, both c and d must assign σ0 color 1 for possibly distinct length

one 1 strings σ ∈ T . As T has a unique path, we claim there can only be one such

σ. Suppose not: then, the proof of Lemma 4.1.7 allows us to extend both distinct

witnessing strings for c and d to two infinite paths in T , a contradiction. Suppose

inductively that c(σ0) = d(σ0) and c(σ1) = d(σ1) for all nodes σ of length less than or

equal to n, and fix τ such that |τ | ≤ n, and c(τ0) = d(τ0) = 1. Consider an arbitrary

string σ ∈ T of length n + 1. If σ is not extendible to an infinite path in T , then

both c and d must assign σ0 color 1 and and σ1 color 0. If σ is extendible, it is

the only such string in T of length n + 1. By induction, τ is extendible, so σ is a

successor of τ . Consequently, all other successors of τ are not extendible, and we have

c(σ0) = d(σ0) = 0 as Eτ is properly 2-colored. This completes the induction.

For the reverse direction, we prove the contrapositive: if T has two paths, then

H has more than one proper 2-coloring (up to swapping colors). Let f and g

be two distinct paths in T . Let f i denote 〈f(0), f(1), . . . , f(i)〉 and gi denote

〈g(0), g(1), . . . , g(i)〉. Define the proper 2-colorings cf and cg of H as in the proof of
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Lemma 4.1.7:

cf (s) = cf (a0) = cf (b0) = 1, cf (a1) = cf (b1) = 0,

cf (f
i
0) = 0, cf (f

i
1) = 1, for all i ∈ N,

cf (τ0) = 1 and cf (τ1) = 0 for τ 6≺ f ;

cg(s) = cg(a0) = cg(b0) = 1, cg(a1) = cg(b1) = 0,

cg(g
i
0) = 0, cg(g

i
1) = 1, for all i ∈ N,

cg(τ0) = 1 and cg(τ1) = 0 for τ 6≺ g.

Note cf (s) = cg(s) = 1. Fix n such that fn 6= gn. For m > n, we have cf (gm1 ) = 0

as gm 6≺ f . Since cg(g
m
1 ) = 1, we see cf and cg are distinct proper 2-colorings of H.

This verifies the claim.

To complete the proof, we define the characteristic function of the set of indices for

the ill-founded trees in 〈Ti, Li〉. Apply item 2 to determine a function f : N→ 2 such

that f(i) = 1 if and only if Hi has a proper 2-coloring. Then by ∆0
1 comprehension

the set Z = {i : f(i) = 1} exists. Since Ti has a path if and only if Hi has a proper

2-coloring if and only if f(i) = 1, the set Z is as desired.

It is natural to state the principles at play in Theorem 4.1.2 as problems in the

sense of Weihrauch reductions. Let UHPC(2) be the problem whose instances are

hypergraphs H that admit at most one distinct proper 2-coloring, with solution 1

if H does admit a proper 2-coloring and 0 if not. Similarly define UIF to be the

problem which has for instances trees T ⊆ NN that contain as most one path with the

solution 1 if T has exactly one infinite path, and 0 otherwise. Thus UIF is the problem
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of determining whether or not a tree is ill-founded given that it will be uniquely

ill-founded if so.

Hirst formulated similar problems for the colorability of general hypergraphs in

Theorem 12 of [17]. Specifically, he defined the problems HPC(k): instances are

hypergraphs H with edge set E given as a sequence 〈ei〉i∈N, and solutions are the

integer 1 if H admits a proper k-coloring and the integer 0 if not; and WF: instances

are trees T ⊆ NN with solutions the integer 1 if T is well-founded and 0 otherwise.

The infinite parallelization of WF, written ŴF is a natural analogue of the reverse

mathematical system Π1
1-CA0 in the Weihrauch degrees. The search for a definitive

analogue of the system ATR0 in the Weihrauch lattice is of current interest. For a

survey of potential candidates, see Kihara, Marcone and Pauly [20]. Note ŴF is

denoted by Π1
1-CA0 in [20], while we reserve the expression Π1

1-CA0 for the subsystem

of second order arithmetic.

We modify Hirst’s proof of Theorem 12 in [17] to show that UHPC(2) and UIF are

strongly Weihrauch equivalent. This, in combination with Theorem 4.1.2, yields UIF

as another analogue of ATR0 in the strong Weihrauch lattice.

Theorem 4.1.8. UHPC(2) ≡sW UIF.

Proof. To show that UIF ≤sW UHPC(2), apply the reversal from Theorem 4.1.2. Given

a tree T we may uniformly compute the tree T ∗ and its leaf set LT ∗ as in Lemma

4.1.4. In turn, we may compute the graph H from Lemma 4.1.7 for T ∗. Applying

UHPC(2) yields a solution which is identically a solution of T . This is because H will

have a proper 2-coloring if and only if T ∗, and thus T , has an infinite path.

To see that UHPC(2) ≤sW UIF, let H = 〈V,E〉 be a hypergraph with vertices

V = {v0, v1, . . . } and edges E = {e0, e1, . . . }. Build a tree T uniformly in H as follows:
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place σ in T if σ satisfies the following.

1. If σ(2j) = k, then either k is a (code for a) pair {vm, vn} ⊆ ej and m is the least

indexed element of ej , or k is (a code for) ∅ and ej does not contain two vertices

from {v0, v1, . . . , v|σ|}.

2. The even entries are a 2-coloring: if 2j + 1 < |σ|, then σ(2j + 1) < 2 which we

view as the of vj.

3. The partial coloring defined on the odd entries of σ is proper with respect to

the even entries: if σ(2j) encodes the set {vm, vn} and 2m+ 1, 2n+ 1 < |σ| then

σ(2m+ 1) 6= σ(2n+ 1).

4. If σ(2j) encodes the set {vm, vn} with m < n and 2n + 1 < |σ|, then the odd

entries of σ are constant on all vertices in vi ∈ ej with i < n.

5. If |σ| > 1, then σ(1) = 0.

Note T is closed under prefix and is thus a tree. We claim that H has a unique proper

2-coloring if and only if T has exactly one path. To show this, we first prove the

contrapositive of the only if direction before directly showing the if direction.

To begin, if T does not have exactly one path, then T either has no path or has at

two least paths. Any proper 2-coloring of H can be used to define a path through

T , so if T has no path, H is not properly 2-colorable. On the other hand, suppose

T has two distinct paths f and g and let cf and cg be the proper 2-colorings of H

defined by their odd entries. Note cf (v0) = cg(v0) = 0 by item 5. To see cf and cg are

distinct, we show f and g differ on some odd entry. Suppose not. So cf = cg. Note

that the pairs encoded in the even entries of f and g witness that cf and cg are proper
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(items 1 and 3). Moreover, they witness this with the unique vertex of least index

from each edge of cardinality at least 2 which differs in color from the least indexed

vertex of the edge (item 4). Since f and g define the same coloring, they must agree

on each of these pairs witnessing it is proper. Hence f and g agree on every even

entry and are not distinct, a contradiction. Fix j such that f(2j + 1) 6= g(2j + 1).

Then cf (vj) 6= cg(vj) and we have that cf and cg are distinct proper 2-colorings of H.

In both cases we conclude that if T does not have exactly one path, then H does not

have a unique proper 2-coloring. This verifies the only if direction of the claim.

For the if direction, suppose T has exactly one path. Then clearly H has a unique

proper 2-coloring. If H had any more proper 2-colorings, one of them would be distinct

from that given by the path of f while agreeing that the color of v0 is 0. This coloring

would define a second path in T diverging at the least odd entry in which the colors

differ. This completes the verification of the claim and the proof is complete.

4.2 Distinguishing colorability and unique colorabil-

ity in graphs and hypergraphs — Joint work

with Jeffry L. Hirst

The results of the previous section motivate the general program, being conducted by

the author in collaboration with Jeff Hirst, of studying unique colorability in graphs

and hypergraphs. We now give some preliminary results of this work.

As mentioned above, Theorem 6 of Davis, Hirst, Pardo, and Ransom [3] establishes

Π1
1-CA0 is equivalent to determining which in a sequence of hypergraphs are properly

2-colorable. Specifically, they showed that over RCA0, Π1
1-CA0 is equivalent to the

following statement



97

If 〈Hi〉i∈N is a sequence of hypergraphs, then there is a function f : N→ 2

such that f(i) = 1 if and only if Hi has a proper k-coloring.

This can be extended to find a function which discriminates between hypergraphs

with a unique proper 2-coloring and those without.

Theorem 4.2.1. Over RCA0, the following are equivalent:

1. Π1
1-CA0

2. If 〈Hi〉i∈N is a sequence of hypergraphs, then there is a function s : N→ 3 such

that

s(i) =


0 if Hi has no proper 2-coloring

1 if Hi has a unique proper 2-coloring

2 if Hi has many proper 2-colorings

Proof. Suppose we are given the sequence 〈Hi〉i∈N and work in Π1
1-CA0. As mentioned

above, Π1
1-CA0 suffices to obtain a function t : N→ 2 such that t(i) = 1 if and only if

Hi admits a proper 2-coloring. Let ϕ(i,X) be the arithmetic formula which says X

encodes a proper 2-coloring of Hi. The set

S = {i : t(i) = 1 ∧ ∀f∀g(ϕ(i, f) ∧ ϕ(i, g))→ (∀nf(n) = g(n) ∨ ∀nf(n) = g(n) + 1)}

is Π1
1 definable. Define s : N→ 3 as follows:

s(i) =


0 if t(i) = 0

1 if i ∈ S

2 else
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Clearly s is definable from S and t and satisfies the consequent of item (2). This

completes the direction that 1 implies 2.

The direction 2 implies 1 is immediate from Theorem 6 of Davis, Hirst, Pardo,

and Ransom [3].

We next restrict our attention to graphs. Note that k-colorability of a graph

G = (V,E) is a compactness phenomenon. That is, a countable graph G is k-colorable

if and only if every finite subgraph of G is k-colorable. Indeed, with an enumeration of

V = 〈vi〉i∈N, it is simple to define the tree T ⊆ k<N of k-colorings of initial segments

({vi : i ≤ n}, E) of G. Place σ ∈ T if |σ| = n, and c(vi) = σ(i) is a k-coloring of

({vi : i ≤ n}, E). Any path in T encodes a k-coloring of G, and if T is well-founded,

there is some m such that the subgraph ({vi : i ≤ m}, E) is not k-colorable. See

Theorems 3.12 and 3.13 of Hirst [14] for a proof that this fact is equivalent to WKL0.

So we see that determining a given graph is not k-colorable is a Σ0
1 question.

We need merely determine if there exists a (code for a) finite subgraph of G which

is not k-colorable, and there are only finitely many possible k-colorings to check.

Determining unique k-colorability however, is a more complex question. We begin

with 2 colors.

Definition 4.2.2. A graph G = (V,E) is called connected if for every pair of vertices

u, v, there is a sequence 〈v0, . . . , vn〉 of vertices with v0 = u, vn = v, and {vi, vi+1} ∈ E

for all i ≤ n. We call 〈v0, . . . , vn〉 a path from u to v.

If a 2-colorable graph is connected, it may only admit a unique 2-coloring. Any

change in the color of a vertex will propagate to every other vertex via some path.

For example, if c and d were distinct 2-colorings of a connected graph, there would

be two vertices u and v such that c(u) = d(u) and c(v) 6= d(v). By working on a
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path, we can assume without loss of generality that u and v are adjacent. Since c

and d are 2-colorings, one of c or d assigns the same color to u and v, a contradiction.

As determining whether a graph is connected is also arithmetic, we may distinguish

between 2-colorable and uniquely 2-colorable graphs in ACA0.

Theorem 4.2.3. Over RCA0, the following are equivalent:

1. ACA0

2. If 〈Gi〉i∈N is a sequence of graphs, then there is a function s : N→ 3 such that

s(i) =


0 if Gi has no 2-coloring

1 if Gi has a unique 2-coloring

2 if Gi has many 2-colorings

Proof. To see 1 implies 2, note that the value of s(i) is arithmetic in Gi = (Vi, Ei).

To elaborate, Gi has no 2-coloring if some finite subgraph of Gi is not 2-colorable.

So s(i) = 0 if and only if there exists (a code for) a finite subset of Vi, such that

for all (codes for) functions c : F → 2, there are u, v ∈ F such that (u, v) ∈ Ei and

c(u) = c(v). Note s(i) 6= 0 is also arithmetic in Gi.

Specifically, s(i) = 1 if both s(i) 6= 0 and Gi is connected. That is s(i) = 1 if and

only if both ¬(s(i) = 0) and for every pair u, v ∈ Vi there exists (a code for) a path

〈v0, . . . , vn〉 from u to v. We have s(i) = 2 in case both s(i) 6= 0 and s(i) 6= 1.

Thus arithmetic comprehension suffices to prove s exists.

For the reversal, we take an arbitrary injection f : N→ N and show ran(f) exists,

which suffices by Lemma III.1.3 of Simpson [22]. Construct a sequence of graphs
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〈Gi〉i∈N as follows. For each n, let Gn = (N, En) with En = {(m,m+ 1) : f(m) 6= n}.

Recursive comprehension suffices to show the sequence 〈Gi〉i∈N exists.

Apply item 2 to 〈Gi〉i∈N to obtain s. Note if f(m) = n, then Gn is not connected.

Indeed, since f is injective, {0, . . .m} and {m+ 1,m+ 2, . . . } are disjoint connected

components of Gn. If n 6∈ ran(f), then Gn is connected, and clearly 2-colorable. Hence,

n ∈ ran(f) if and only if s(n) 6= 1. So ran(f) exists by recursive comprehension, and

the proof is complete.

To extend this to k-colorings for k > 2, we invoke another compactness argument.

Namely, that G has more than one k-coloring only if it has a finite subgraph G′ with

more than one k-coloring, each of which can be extended to any finite supergraph of G′.

If this is the case, we can construct trees in k<N similar to above containing all finite

extensions of some k-coloring of G′ to finite supergraphs. These trees will necessarily

be infinite and thus contain infinite paths each of which define a distinct k-coloring

on G. However, as Theorem 4.2.5 shows, we require arithmetic comprehension to sort

which graphs in a given sequence have one or many k-colorings. This is in contrast to

Theorem 3.13 of Hirst [14].

Definition 4.2.4. We say G = (V,E) is uniquely k-colorable if there exists a k-

coloring c : V → k and for any other k-coloring d of G, there is a permutation σ on

{0, . . . , k − 1} such that for all v ∈ V

d(v) = σ(c(v)).

Note distinct k-colorings c and d must both agree on some vertex and differ on

another.
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Theorem 4.2.5. For each k > 2, the following are equivalent over RCA0:

1. ACA0

2. If 〈Gi〉i∈N is a sequence of graphs, then there is a function s : N→ {0, 1, 2} such

that

s(i) =


0 if Gi has no k-coloring

1 if Gi has a unique k-coloring

2 if Gi has many k-colorings

Proof. As in Theorem 4.2.3, note s(i) is arithmetic in Gi. We have that s(i) = 0

if there is a (code for a) finite subgraph of Gi which has no k-coloring. We have

that s(i) = 2 if there is a (code for a) finite subgraph G′ of Gi with more than one

k-coloring, and for every (code for a) finite supergraph of G′, there is are k-colorings

extending each of those on G′. Then s(i) = 1 if and only if s(i) 6= 0 and s(i) 6= 2. As

s is arithmetically definable in 〈Gi〉i∈N, arithmetic comprehension suffices to prove it

exists.

For the reversal, we again take an arbitrary injection f : N → N and show

ran(f) exists. Construct a computable sequence of graphs 〈Gi〉i∈N as follows. Let

Gn = (N × {0, . . . , k}, En) and construct En in stages. At stage s, if f(s) = n, add

edges to En to make 〈s, 0〉, 〈s, 1〉, . . . , 〈s, k〉, a complete graph on k + 1 many vertices.

Otherwise, do nothing.

Apply item 2 to 〈Gi〉i∈N to obtain s. If f(m) = n, then Gn contains a subgraph

which is a complete graph on k + 1 vertices. So Gn is not k-colorable. If n 6∈ ran(f),

then Gn has a trivial edge relation, and is thus k-colorable. Hence, n ∈ ran(f) if and

only if s(i) = 0. We see ran(f) exists by recursive comprehension, and the proof is
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complete.

Many questions remain in this direction and in particular in the analysis of these

results under computable and Weihrauch reductions. For instance, we conjecture item

2 of Theorem 4.2.1 is strongly Weihrauch equivalent to ŴF. Item 2 in Theorem 4.2.5

seems to indicate the number of colors is innocuous when it comes to sorting graphs by

unique k-colorability. We seek to understand whether the differences in sorting for say

2 or 5-colorability could be made precise using computable or Weihrauch reductions.

Purely combinatorial questions remain as well. Recall a strong k-coloring on a

hypergraph is one that is injective on every edge. As we saw in the proof of Theorem

4.2.5, for each k, there is a graph with no k-coloring. We conjecture this holds as well

for hypergraphs with respect to strong k-colorings.
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