
Math 2410-004/013 Name: Solutions Due: 3/23/18

Homework #5: Appendix B

In class, we saw that matrix multiplication was not commutative. This means, for example that if A
and B are both 2 ˆ 2 matrices, then it may be the case that AB and BA are different matrices, that is
AB ‰ BA. This however, begs the question of which properties of real multiplication (i.e. multiplication of
real numbers) do generalize to matrix multiplication. Real multiplication has a multiplicative identity, the
number 1 (x ¨1 “ 1 ¨x “ x) and we have seen in class that matrix multiplication has a multiplicative identity
as well, namely the identity matrix

I “

ˆ

1 0
0 1

˙

or

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚.

If A and I are of the proper size we have AI “ A “ IA. (Can you determine the additive identities for real
and matrix multiplication?)
In the following two questions, we will generalize two more properties of real multiplication to matrix
multiplication.

1. Here we will show that the distributive property (apx` yq “ ax` ay for real numbers a, x and y) holds
for matrix multiplication. To simplify the computations we restrict our attention to 2ˆ 2 matrices and
2ˆ 1 column vectors. Specifically, let

A “

ˆ

a b
c d

˙

, x “

ˆ

x1
x2

˙

, and y “

ˆ

y1
y2

˙

.

Show that matrix multiplication distributes over matrix addition by verifying that

Apx` yq “ Ax`Ay

Solution: As real multiplication distributes, we have the following

Apx` yq “

ˆ

a b
c d

˙ ˆˆ

x1
x2

˙

`

ˆ

y1
y2

˙˙

“

ˆ

a b
c d

˙ ˆ

x1 ` y1
x2 ` y2

˙

“

ˆ

apx1 ` y1q ` bpx2 ` y2q
cpx1 ` y1q ` dpx2 ` y2q

˙

“

ˆ

ax1 ` ay1 ` bx2 ` by2
cx1 ` cy1 ` dx2 ` dy2

˙

“

ˆ

ax1 ` bx2
cx1 ` dx2

˙

`

ˆ

ay1 ` by2
cy1 ` dy2

˙

ˆ

a b
c d

˙ ˆ

x1
x2

˙

`

ˆ

a b
c d

˙ ˆ

y1
y2

˙

“ Ax`Ay
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Distribution can be shown in full generality: that is if A, B and C have the necessary products defined then

ApB ` Cq “ AB `AC and pB ` CqA “ BA` CA.

You do not need to do this.
For two square matrices A and B, we can now add them (A ` B), subtract them (A ´ B “ A ` p´1qB)
and multiply them (AB or BA). Is there any way to generalize division to matrices? Though we cannot
straight-forwardly define “matrix division” per se, we can define a suitable analog. In the real numbers,
dividing by a number a is equivalent to multiplying by the number 1{a or a´1 where a´1 is the unique
number such that

a ¨ a´1 “
a

a
“ 1.

Indeed 4˜ 2 “ 4 ¨ 2´1 “ 4 ¨ p1{2q “ 2 and 2˜ 2 “ 2 ¨ 2´1 “ 2 ¨ p1{2q “ 1. For a given number a, we call the
number a´1 it’s multiplicative inverse for it essentially cancels the effect of multiplying by a.
Thus our question of generalizing division to matrix multiplication becomes “for a given matrix A, can we
find another matrix B so that AB “ BA “ I?” For certain matrices, we can, and we call the matrix B
the multiplicative inverse of A. The next two questions deal with when we can, and how we, find such an
inverse.

2. Let

A “

ˆ

2 7
1 4

˙

, B “

ˆ

´4 7
1 ´2

˙

and C “

ˆ

4 ´7
´1 2

˙

.

Determine which of B and C is the multiplicative inverse of A and label it A´1.

Hint: AA´1 “ I “

ˆ

1 0
0 1

˙

.

Solution: If B is the multiplicative inverse of A, then it has to be the case that AB “ I. Notice

AB “

ˆ

2 7
1 4

˙ ˆ

´4 7
1 ´2

˙

“

ˆ

8´ 7 14´ 14
´4` 4 7´ 8

˙

“

ˆ

´1 0
0 ´1

˙

As AB ‰ I, we must have that AC “ I. Checking that product,

AC “

ˆ

2 7
1 4

˙ ˆ

4 ´7
´1 2

˙

“

ˆ

8´ 7 14´ 14
4´ 4 ´7` 8

˙

“

ˆ

1 0
0 1

˙

,

we see indeed that AC “ I and thus C “ A´1.

Now that we see matrices have inverses, how do we find the inverse? Well, when trying to determine an x
such that Ax “ b for some matrix A and vector b, we used row reduction on the augmented matrix pA | bq.
As it turns out, this approach will also work for finding matrix inverses. Given a matrix

A “

ˆ

a b
c d

˙

if it has an inverse matrix A´1 such that AA´1 “ I, we can determine A´1 by row reducing the augmented
matrix pA | Iq. (For an example see App-21 in the text.)

3. Let

A “

¨

˝

1 1 0
1 1 1
0 ´1 1

˛

‚.

(a) Write the augmented matrix pA | Iq where I is the 3ˆ 3 identity matrix.
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Solution:
¨

˝

1 1 0 1 0 0
1 1 1 0 1 0
0 ´1 1 0 0 1

˛

‚

(b) Row reduce your solution to part (a). You should obtain a matrix of the form pI | Bq for some 3ˆ3
B.

Solution:

¨

˝

1 1 0 1 0 0
1 1 1 0 1 0
0 ´1 1 0 0 1

˛

‚

R2`p´1qR1
ÝÝÝÝÝÝÝÑ

¨

˝

1 1 0 1 0 0
0 0 1 ´1 1 0
0 ´1 1 0 0 1

˛

‚

R3`p´1qR2
ÝÝÝÝÝÝÝÑ

¨

˝

1 1 0 1 0 0
0 0 1 ´1 1 0
0 ´1 0 1 ´1 1

˛

‚

R1`R3
ÝÝÝÝÝÑ
p´1qR3
ÝÝÝÝÝÑ

¨

˝

1 0 0 2 ´1 1
0 0 1 ´1 1 0
0 1 0 ´1 1 ´1

˛

‚

R23
ÝÝÑ

¨

˝

1 0 0 2 ´1 1
0 1 0 ´1 1 ´1
0 0 1 ´1 1 0

˛

‚

(c) Verify that the matrix B you found in part (b) is the inverse of A. Label it A´1.

Solution: From part (b) we found

B “

¨

˝

2 ´1 1
´1 1 ´1
´1 1 0

˛

‚.

To see that B is indeed A´1, we consider the product AB:

AB “

¨

˝

1 1 0
1 1 1
0 ´1 1

˛

‚

¨

˝

2 ´1 1
´1 1 ´1
´1 1 0

˛

‚

“

¨

˝

2´ 1` 0 ´1` 1` 0 1´ 1` 0
2´ 1´ 1 1´ 1` 1 1´ 1` 0
0` 1´ 1 0´ 1` 1 0` 1` 0

˛

‚“

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚“ I.

As AB “ I, we have that B “ A´1.

Having the inverse of a coefficient matrix makes it quite simple to solve linear systems with that coefficient
matrix. For example, the system

ax` by “ b1

cx` dy “ b2
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can be written in matrix notation as Ax “ b where A “

ˆ

a b
c d

˙

, x “

ˆ

x
y

˙

and b “

ˆ

b1
b2

˙

.

If A has an inverse, then we can find the values of x and y as follows

Ax “ b ùñ A´1Ax “ A´1b ùñ x “ A´1b ùñ

ˆ

x
y

˙

“ A´1

ˆ

b1
b2

˙

.

4. Consider the system

x` 2y “ b1

3x` 5y “ b2.

(a) Rewrite this system as a matrix equation.

Solution: If A “

ˆ

1 2
3 5

˙

, x “

ˆ

x
y

˙

and b “

ˆ

b1
b2

˙

, we can rewrite the system as the matrix

equation

Ax “ b or “

ˆ

1 2
3 5

˙ ˆ

x
y

˙

“

ˆ

b1
b2

˙

.

(b) Find the inverse of the coefficient matrix.

Solution: We row reduce the matrix pA|Iq:

ˆ

1 2 1 0
3 5 0 1

˙

R2`p´3qR1
ÝÝÝÝÝÝÝÑ

ˆ

1 2 1 0
0 ´1 ´3 1

˙ R1`2R2
ÝÝÝÝÝÑ
´R2
ÝÝÝÑ

ˆ

1 0 ´5 2
0 1 3 ´1

˙

Thus, the inverse of A is

A´1 “

ˆ

´5 2
3 ´1

˙

.

(c) Use this to solve the three systems in which
ˆ

b1
b2

˙

“

ˆ

1
1

˙

,

ˆ

b1
b2

˙

“

ˆ

0
0

˙

and

ˆ

b1
b2

˙

“

ˆ

1
2

˙

without row reduction.

Solution: Let

b1 “

ˆ

1
1

˙

, b2 “

ˆ

0
0

˙

and b3 “

ˆ

1
2

˙

Note if Ax “ b, then A´1Ax “ A´1b which implies that x “ A´1b. Thus, if xi is the solution
to Ax “ bi for i “ 1, 2 or 3 we have

x1 “ A´1b1 “

ˆ

´5 2
3 ´1

˙ ˆ

1
1

˙

“

ˆ

´3
´2

˙

x2 “ A´1b2 “

ˆ

´5 2
3 ´1

˙ ˆ

0
0

˙

“

ˆ

0
0

˙

x3 “ A´1b3 “

ˆ

´5 2
3 ´1

˙ ˆ

1
2

˙

“

ˆ

´1
´1

˙

Not all matrices have inverses, we will not investigate why that is here, but we will state the following fact.
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Fact: If A a matrix such that detA “ 0, the A has no inverse and is called noninvertible or
singular.

As we saw in the previous problem, if a coefficient matrix has an inverse, than the corresponding system has
a unique solution. When a matrix is non-invertible, then a system with that coefficient matrix may have 0,
1, or infinitely many solutions.
We’ll investigate this next.

5. Consider the system

x` 3y ´ 2z “ ´7

4x` y ` 3z “ 5

2x´ 5y ` 7z “ 19

(a) Rewrite this system as a matrix equation. Give the associated augmented matrix for this system.

Solution: If A “

¨

˝

1 3 ´2
4 1 3
2 ´5 7

˛

‚, x “

¨

˝

x
y
z

˛

‚ and b “

¨

˝

´7
5
19

˛

‚ then the matrix equation which

encodes this system is

Ax “ b or

¨

˝

1 3 ´2
4 1 3
2 ´5 7

˛

‚

¨

˝

x
y
z

˛

‚“

¨

˝

´7
5
19

˛

‚.

The associated augmented matrix is

¨

˝

1 3 ´2 ´7
4 1 3 5
2 ´5 7 19

˛

‚

(b) Row reduce the augmented matrix given above and translate the resulting matrix into a system of
equations.

Hint: You should obtain only two equations.

Solution: Row reducing yields

¨

˝

1 3 ´2 ´7
4 1 3 5
2 ´5 7 19

˛

‚

R2`p´4qR1
ÝÝÝÝÝÝÝÑ
R3`p´2qR1
ÝÝÝÝÝÝÝÑ

¨

˝

1 3 ´2 ´7
0 ´11 11 33
0 ´11 11 33

˛

‚

R3`p´1qR2
ÝÝÝÝÝÝÝÑ

´1
11 R2
ÝÝÝÝÑ

R1`p´3qR2
ÝÝÝÝÝÝÝÑ

¨

˝

1 0 1 2
0 1 ´1 ´3
0 0 0 0

˛

‚

which translating back into a system of equations gives

x` z “ 2

y ´ z “ ´3

(c) Let k be any real number and set z “ k. Give the solution to the original system in terms of the
relationship between x, y and z with k.
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Solution: If z “ k, then x ` k “ 2 and y ´ k “ ´3. Hence, for any choice of k, we have a
solution to the system given by

x “ 2´ k

y “ ´3´ k

z “ k

When finding the eigenvalues of a matrix A, we find λ such that the matrix A ´ λI has determinant zero.
That is, we choose λ such that A´ λI does not have an inverse. This ensures that the system of equations
defined by

Ax “ λx ùñ pA´ λIqx “ 0

has infinitely many nonzero solutions. We finish this homework by showing that if λ is an eigenvalue of A,
then λ must have infinitely many eigenvectors.

6. Let A be a matrix with eigenvalue λ for which v is an eigenvector. Prove that for any constant k, kv is
also an eigenvector of A with eigenvalue λ. This shows that λ has infinitely many distinct eigenvalues.

Solution: To show that kv is an eigenvector, we simply need show Apkvq “ λpkvq. To that end,
note

Apkvq “ Akv “ kAv “ kpAvq “ kpλvq “ λkv “ λpkvq,

as desired. This completes the proof.
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