\qquad

Homework \#7: The Laplace transform

In this homework you will verify a few properties of the Laplace transform. Recall the definition is as follows

$$
\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

where we consider F a function of all s such that the improper integral converges.
In the first problem you will show that this transform is linear, that is, that for constants a, b and functions $f(t)$ and $g(t)$ we have

$$
\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[f(t)]
$$

To aid you in this endeavor, we demonstrate how to show $\mathcal{L}[a f(t)]=a \mathcal{L}[f(t)]$. To see this, notice

$$
\mathcal{L}[a f(t)]=\int_{0}^{\infty} e^{-s t}(a f(t)) d t=a \int_{0}^{\infty} e^{-s t} f(t) d t=a \mathcal{L}[f(t)]
$$

This verifies what is desired.

1. Prove the Laplace transform is linear. That is, show that

$$
\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[f(t)]
$$

for arbitrary functions $f(t)$ and $g(t)$ and constants a and b.

Solution: To see this, notice

$$
\begin{aligned}
\mathcal{L}[a f(t)+b g(t)]=\int_{0}^{\infty} e^{-s t}(a f(t)+b g(t)) d t & =\int_{0}^{\infty} a e^{-s t} f(t)+b e^{-s t} g(t) d t \\
& =\int_{0}^{\infty} a e^{-s t} f(t)+b e^{-s t} g(t) d t \\
& =a \int_{0}^{\infty} e^{-s t} f(t) d t+b \int_{0}^{\infty} e^{-s t} g(t) d t=a \mathcal{L}[f(t)]+b \mathcal{L}[g(t)]
\end{aligned}
$$

This verifies what is desired.

For the next problem, recall how we have shown that $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$. Via integration by parts we have

$$
\mathcal{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t}\right) f(t) d t
$$

where $u=e^{-s t}$ and $d v=f^{\prime}(t) d t$. We may assume, as usual, that $f(t)$ grows slower than the exponential so that

$$
\left.e^{-s t} f(t)\right|_{0} ^{\infty}=\lim _{b \rightarrow \infty} e^{-s b} f(b)-e^{0} f(0)=0-f(0)=-f(0)
$$

Considering the other term we notice

$$
\int_{0}^{\infty}\left(-s e^{-s t}\right) f(t) d t=-s \int_{0}^{\infty} e^{-s t} f(t) d t=-s \mathcal{L}[f(t)]
$$

Putting these two observations together yields

$$
\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t}\right) f(t) d t=-f(0)-(-s \mathcal{L}[f(t)])=s \mathcal{L}[f(t)]-f(0)=s F(s)-f(0)
$$

Thus, by connecting the appropriate string of equalities, we have shown

$$
\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)
$$

2. Prove $\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$.

Hint: Follow steps similar to the above discussion. You may assume that f and all of it's derivatives grow slower than the exponential function $e^{s t}$. You will need to use integration by parts twice or only once and then use a fact we have already shown.

Solution: To see this, notice that integration by parts yields

$$
\mathcal{L}\left[f^{\prime \prime}(t)\right]=\int_{0}^{\infty} e^{-s t} f^{\prime \prime}(t) d t=\left.e^{-s t} f^{\prime}(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t}\right) f^{\prime}(t) d t
$$

where $u=e^{-s t}$ and $d v=f^{\prime \prime}(t) d t$. As above we have

$$
\left.e^{-s t} f^{\prime}(t)\right|_{0} ^{\infty}=\lim _{b \rightarrow \infty} e^{-s b} f^{\prime}(b)-e^{0} f^{\prime}(0)=0-f^{\prime}(0)=-f^{\prime}(0)
$$

Considering the other term we see

$$
\int_{0}^{\infty}\left(-s e^{-s t}\right) f^{\prime}(t) d t=-s \int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=-s \mathcal{L}\left[f^{\prime}(t)\right]
$$

But from above we know that $\mathcal{L}\left[f^{\prime}(t)\right]=s \mathcal{L}[f(t)]-f(0)$. So

$$
-s \mathcal{L}\left[f^{\prime}(t)\right]=-s(s F(s)-f(0))=-s^{2} F(s)+s f(0)
$$

Putting this all together gives us

$$
\left.e^{-s t} f^{\prime}(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t}\right) f^{\prime}(t) d t=-f^{\prime}(0)-\left(-s^{2} F(s)+s f(0)\right)=s^{2} F(s)-s f(0)-f^{\prime}(0)
$$

Connecting this last equality with the first verifies that

$$
\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)
$$

3. Show that $\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)$.

Hint: If

$$
F(s)=\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

then

$$
F(15)=\int_{0}^{\infty} e^{-(15) t} f(t) d t
$$

Indeed, for any input k, we have

$$
F(k)=\int_{0}^{\infty} e^{-(k) t} f(t) d t
$$

With this in mind, what is $F(s-a)$? Knowing that should help you in your verification.

Solution: We first note that

$$
F(s-a)=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=\int_{0}^{\infty} e^{(a-s) t} f(t) d t
$$

Next, we see

$$
\mathcal{L}\left[e^{a t} f(t)\right]=\int_{0}^{\infty} e^{-s t}\left(e^{a t} f(t)\right) d t=\int_{0}^{\infty} e^{-s t+a t} f(t) d t=\int_{0}^{\infty} e^{(a-s) t} f(t) d t=F(s-a)
$$

Thus, as desired, we have shown

$$
\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a) .
$$

4. Find the general solution of this DE using the Laplace transform

$$
y^{\prime \prime}+9 y=e^{t}
$$

Hint: It may help to let c_{1} and c_{2} be arbitrary constants for which you set $y(0)=c_{1}$ and $y^{\prime}(0)=c_{2}$.

Solution: To begin we take the transform of the equation and solve for $\mathcal{L}[y]=Y(s)$

$$
\begin{aligned}
\mathcal{L}\left[y^{\prime \prime}+9 y\right]=\mathcal{L}\left[e^{t}\right] & \Longrightarrow \mathcal{L}\left[y^{\prime \prime}\right]+9 \mathcal{L}[y]=\frac{1}{s-1} \\
& \Longrightarrow s^{2} Y(s)-s y(0)-y^{\prime}(0)+9 Y(s)=\frac{1}{s-1} \\
& \Longrightarrow s^{2} Y(s)-s c_{1}-c_{2}+9 Y(s)=\frac{1}{s-1} \\
& \Longrightarrow s^{2} Y(s)-s c_{1}-c_{2}+9 Y(s)=\frac{1}{s-1} \\
& \Longrightarrow\left(s^{2}+9\right) Y(s)=\frac{1}{s-1}+s c_{1}+c_{2} \\
& \Longrightarrow Y(s)=\frac{1}{(s-1)\left(s^{2}+9\right)}+\frac{s c_{1}}{\left(s^{2}+9\right)}+\frac{c_{2}}{\left(s^{2}+9\right)}
\end{aligned}
$$

Via partial fraction decomposition we have that

$$
Y(s)=\left(\frac{1}{10}\right) \frac{1}{s-1}+\left(c_{1}-\frac{1}{10}\right) \frac{s}{\left(s^{2}+9\right)}+\left(c_{2}-\frac{1}{10}\right) \frac{1}{\left(s^{2}+9\right)}
$$

To determine $y(t)$ we take the inverse Laplace transform of $Y(s)$:

$$
\begin{aligned}
\mathcal{L}^{-1}[Y(s)] & =\mathcal{L}^{-1}\left[\left(\frac{1}{10}\right) \frac{1}{s-1}+\left(c_{1}-\frac{1}{10}\right) \frac{s}{\left(s^{2}+9\right)}+\left(c_{2}-\frac{1}{10}\right) \frac{1}{\left(s^{2}+9\right)}\right] \\
& =\left(\frac{1}{10}\right) \mathcal{L}^{-1}\left[\frac{1}{s-1}\right]+\left(c_{1}-\frac{1}{10}\right) \mathcal{L}^{-1}\left[\frac{s}{\left(s^{2}+9\right)}\right]+\left(c_{2}-\frac{1}{10}\right) \mathcal{L}^{-1}\left[\frac{1}{\left(s^{2}+9\right)}\right] \\
& =\left(\frac{1}{10}\right) \mathcal{L}^{-1}\left[\frac{1}{s-1}\right]+\left(c_{1}-\frac{1}{10}\right) \mathcal{L}^{-1}\left[\frac{s}{\left(s^{2}+9\right)}\right]+\left(c_{2}-\frac{1}{10}\right)\left(\frac{1}{3}\right) \mathcal{L}^{-1}\left[\frac{3}{\left(s^{2}+9\right)}\right] \\
\Longrightarrow y(t) & =\left(\frac{1}{10}\right) e^{t}+\left(c_{1}-\frac{1}{10}\right) \cos 3 t+\left(c_{2}-\frac{1}{10}\right)\left(\frac{1}{3}\right) \sin 3 t
\end{aligned}
$$

While this is a perfectly acceptable form of the general solution, we note that as c_{1} and c_{2} are arbitrary constants we can freely set

$$
k_{1}=c_{1}-\frac{1}{10} \text { and } k_{2}=\left(c_{2}-\frac{1}{10}\right)\left(\frac{1}{3}\right) .
$$

In conclusion, the general solution of this differential equation is

$$
y(t)=\frac{e^{t}}{10}+k_{1} \cos 3 t+k_{2} \sin 3 t
$$

for arbitrary constants k_{1} and k_{2}.

