$\qquad$

## Homework \#3: Sections 2.1

1. The direction field for

$$
\frac{d y}{d x}=x^{2}+y
$$

is given below. Consider the following initial conditions
(a) $y(0)=-10$
(b) $y(0)=0$
(c) $y(-4)=0$
(d) $y(4)=0$

For each condition, sketch a solution curve to the differential equation that satisfies that condition.

2. The function $f(x)$ is plotted below. By hand, sketch a direction field over an appropriate grid for the DE

$$
\frac{d y}{d x}=f(x)
$$


3. The function $f(y)$ is plotted below.

(a) Sketch a direction field over an appropriate grid for the DE

$$
\begin{equation*}
\frac{d y}{d x}=f(y) \tag{1}
\end{equation*}
$$

(b) Use the graph to locate the critical points of and sketch a phase portrait 1.
(c) Sketch typical solution curves in the subregions in the $x y$-plane determined by the graphs of the equilibrium solutions. (Make sure to include the equilibrium solutions!)

