Homework \#7: The Laplace transform

In this homework you will verify a few properties of the Laplace transform. Recall the definition is as follows

$$
\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

where we consider F a function of all s such that the improper integral converges.
In the first problem you will show that this transform is linear, that is, that for constants a, b and functions $f(t)$ and $g(t)$ we have

$$
\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[f(t)]
$$

To aid you in this endeavor, we demonstrate how to show $\mathcal{L}[a f(t)]=a \mathcal{L}[f(t)]$. To see this, notice

$$
\mathcal{L}[a f(t)]=\int_{0}^{\infty} e^{-s t}(a f(t)) d t=a \int_{0}^{\infty} e^{-s t} f(t) d t=a \mathcal{L}[f(t)]
$$

This verifies what is desired.

1. Prove the Laplace transform is linear. That is, show that

$$
\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[f(t)]
$$

for arbitrary functions $f(t)$ and $g(t)$ and constants a and b.
For the next problem, recall how we have shown that $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$. Via integration by parts we have

$$
\mathcal{L}\left[f^{\prime}(t)\right]=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t}\right) f(t) d t
$$

where $u=e^{-s t}$ and $d v=f^{\prime}(t) d t$. We may assume, as usual, that $f(t)$ grows slower than the exponential so that

$$
\left.e^{-s t} f(t)\right|_{0} ^{\infty}=\lim _{b \rightarrow \infty} e^{-s b} f(b)-e^{0} f(0)=0-f(0)=-f(0)
$$

Considering the other term we notice

$$
\int_{0}^{\infty}\left(-s e^{-s t}\right) f(t) d t=-s \int_{0}^{\infty} e^{-s t} f(t) d t=-s \mathcal{L}[f(t)]
$$

Putting these two observations together yields

$$
\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-s e^{-s t}\right) f(t) d t=-f(0)-(-s \mathcal{L}[f(t)])=s \mathcal{L}[f(t)]-f(0)=s F(s)-f(0)
$$

Thus, by connecting the appropriate string of equalities, we have shown

$$
\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)
$$

2. Prove $\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0)$.

Hint: Follow steps similar to the above discussion. You may assume that f and all of it's derivatives grow slower than the exponential function $e^{s t}$. You will need to use integration by parts twice or only once and then use a fact we have already shown.
3. Show that $\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)$.

Hint: If

$$
F(s)=\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

then

$$
F(15)=\int_{0}^{\infty} e^{-(15) t} f(t) d t
$$

Indeed, for any input k, we have

$$
F(k)=\int_{0}^{\infty} e^{-(k) t} f(t) d t
$$

With this in mind, what is $F(s-a)$? Knowing that should help you in your verification.
4. Find the general solution of this DE using the Laplace transform

$$
y^{\prime \prime}+9 y=e^{t}
$$

Hint: It may help to let c_{1} and c_{2} be arbitrary constants for which you set $y(0)=c_{1}$ and $y^{\prime}(0)=c_{2}$.

