# The Laplace transform 

Math 2410-004/013
April 23, 2018

Recall that the Laplace transform of a function $f(t)$ is defined to be

$$
\mathcal{L}[f(t)]=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

for all $s$ such that the integral converges.
Below you will find a table of common Laplace transforms and inverse Laplace transforms. Further below is a table summarizing some of the properties of the Laplace transform.

| $f(t)=\mathcal{L}^{-1}[F(s)]$ | $F(s)=\mathcal{L}[f(t)]$ | $f(t)=\mathcal{L}^{-1}[F(s)]$ | $F(s)=\mathcal{L}[f]$ |
| :--- | :--- | :--- | :--- |
| $f(t)=e^{a t}$ | $F(s)=\frac{1}{s-a}$ for $s>a$ | $f(t)=t^{n}$ | $F(s)=\frac{n!}{s^{n+1}}$ for $s>0$ |
| $f(t)=\sin (\omega t)$ | $F(s)=\frac{\omega}{s^{2}+\omega^{2}}$ | $f(t)=\cos (\omega t)$ | $F(s)=\frac{s}{s^{2}+\omega^{2}}$ |
| $f(t)=\mathcal{U}(t-a)$ | $F(s)=\frac{e^{-a s}}{s}$ for $(s>0)$ |  |  |


| Rules for Laplace transforms | Rules for inverse Laplace transform |
| :--- | :--- |
| $\mathcal{L}\left[f^{\prime}(t)\right]=s \mathcal{L}[f(t)]-f(0)$ |  |
| $\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} \mathcal{L}[f(t)]-s f(0)-f^{\prime}(0)$ |  |
| $\mathcal{L}\left[a f_{1}(t)+b f_{2}(t)\right]=a \mathcal{L}\left[f_{1}(t)\right]+b \mathcal{L}\left[f_{2}(t)\right]$ | $\mathcal{L}^{-1}\left[a F_{1}(s)+b F_{2}(s)\right]=a \mathcal{L}^{-1}\left[F_{1}(s)\right]+b \mathcal{L}^{-1}\left[F_{2}(s)\right]$ |
| $\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)$ | $\mathcal{L}^{-1}[F(s-a)]=e^{a t} f(t)$ |
| $\mathcal{L}[f(t-a) \mathcal{U}(t-a)]=e^{-a s} F(s)$ | $\mathcal{L}^{-1}\left[e^{-a s} F(s)\right]=f(t-a) \mathcal{U}(t-a)$ |

