Essential Vocabulary

Below are a few definitions of terms we will use again and again throughout the course. You will need to be familiar with these.

Definition: (Ordinary Differential Equation) Any equation of the form

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}\right)=0
$$

where $y^{(m)}=\frac{d^{m} y}{d x^{m}}$ is called an ordinary differential equation or ODE.

Definition: (Notations) We will interchange the Leibniz notation $\frac{d^{k} y}{d x^{k}}$ and the Newton notation $y^{(k)}$ for the k-th derivative of a function $y(x)$.

Definition: (Order) In a differential equation, the degree of the highest order derivative is called the order of the differential equation. That is,

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

is an n-th order differential equation of a differential equation of order n.

Definition: (Normal form) An n-th order differential equation is said to be in normal form if $y^{(n)}$ is solved in terms of all other terms. That is, the differential equation $F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m)}\right)=0$ is written in the form

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

Definition: (Linearity) An n-th order differential equation is said to be linear if F is linear in $y, y^{\prime}, \ldots, y^{(n)}$. This means that an n-th order differential equation when $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where $g, a_{0}, a_{1}, \ldots, a_{n}$ are functions of only x. If F can not be written this way, we call the differential equation nonlinear.

Definition: (Solution of an ODE) Any function φ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an n-th order ordinary differential equation reduces the equation to an identity, is said to be a solution of the differential equation on the interval.

