Math 2210-002/010 Quiz $9 \quad$ Name: Key $\begin{gathered}\text { Key } \\ \text { Due: 4/15/19 }\end{gathered}$
This is a two-stage quiz. You will receive this back with each question graded pass/fail in our next class meeting. You have until the date specified above to submit corrections for partial credit.

1. (3 points) Let W be the set of all vectors of the form $\left[\begin{array}{c}s+3 t \\ s-t \\ 2 s-t \\ 4 t\end{array}\right]$. Show that W is a subspace of \mathbb{R}^{4} by finding a spanning set for W.

$$
\begin{aligned}
& W=S_{p o n}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right]\right\} \\
& \text { If } \vec{x} \text { in } W \text { then } \vec{x}=S\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-1 \\
4
\end{array}\right]=\left[\begin{array}{c}
s+3 t \\
\frac{s}{25-t} \\
4 x
\end{array}\right]
\end{aligned}
$$

2. (3 points) If W is the set of all vectors of the form $\left[\begin{array}{c}a-2 b \\ 3 b+4 \\ 5 a\end{array}\right]$, is W a subspace of \mathbb{R}^{3} ? Justify why or why not.

$$
\begin{aligned}
& \text { No, } \overrightarrow{0} \text { not in } W \text {. } \\
& \overrightarrow{0} \text { in } \mathbb{R}^{3} \text { is }\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and if } a=b=0 \text {, } \\
& {\left[\begin{array}{c}
c-2 b \\
3 b+4 \\
5 a
\end{array}\right]=\left[\begin{array}{l}
0 \\
4 \\
0
\end{array}\right] \neq \overrightarrow{0} \text {. Every Dontabspee most } \overrightarrow{0} \text {. }}
\end{aligned}
$$

3. (4 points) Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(i) (2 points) Is $\mathbf{u}=\left[\begin{array}{l}3 \\ 1 \\ 0 \\ 1\end{array}\right]$ in $\operatorname{Nul}(A)$? Justify your answer.

$$
\begin{aligned}
A \vec{u} & =3\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-4 \\
-2 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\overrightarrow{0} \text { so no. }
\end{aligned}
$$

\vec{u} not in $\operatorname{Nol}(A)$.
(ii) (2 points) Give an explicit description of $\operatorname{Nul}(\mathrm{A})$ via a spanning set.

$$
\begin{gathered}
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text { in } N J(A) \text { if } \begin{array}{r}
\vec{x}_{1}=4 x_{3}+3 x_{4} \\
x_{2}=2 y_{3}-x_{4} \\
\text { So } \vec{x}=x_{3}\left[\begin{array}{l}
4 \\
2 \\
1 \\
0
\end{array}\right]+x_{1}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
1
\end{array}\right] \\
\longrightarrow \operatorname{Nu}(A)=S p<n\left[\left[\begin{array}{l}
4 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-1 \\
0 \\
1
\end{array}\right]\right)
\end{array} . .
\end{gathered}
$$

