Math 2210-002/010 Quiz 8

\qquad Due: 4/8/19
This is a two-stage quiz. You will receive this back with each question graded pass/fail in our next class meeting. You have until the date specified above to submit corrections for partial credit.

1. (5 points) Consider the parallelogram S plotted below with vertices $(1,1),(-1,4),(2,5)$, and $(4,2)$.

(i) (3 points) Find the area of S.

Sit 5 by $\left[\begin{array}{c}-1 \\ -1\end{array}\right]$ b see gand

$$
\text { by } \quad \vec{u}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \text { and } i=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

So are od S is

$$
\left|\begin{array}{ccc}
\operatorname{dat} & -2 & 3 \\
-1 & 1
\end{array}\right|=|-11|=11
$$

$$
\left[\ddot{n}^{\top} \cdot 2\right]
$$

(ii) (2 points) Define a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{X})=A \mathbf{X}$ where

$$
A=\left[\begin{array}{ll}
1 & 4 \\
1 & 2
\end{array}\right] . \quad \leadsto \operatorname{det} A=-2
$$

Compute the area of the parallelogram $T(S)$, the image of S under T.
Area of

$$
\begin{aligned}
7(S) & =|\operatorname{del} A| \cdot \text { "cree of } S^{\prime} \\
& =|-2| \cdot 11 \\
& =22
\end{aligned}
$$

2. (5 points) Consider the vector space \mathbb{P}_{2} (the space of polynomials of degree at most 2). Three vectors in this space are

$$
\begin{aligned}
& p_{1}(t)=1+x \\
& p_{2}(t)=1-x \\
& p_{3}(t)=3 x^{2}-1 .
\end{aligned}
$$

Give 5 vectors from \mathbb{P}_{2} that are elements of $\operatorname{Span}\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}$.

$$
\begin{array}{ll}
P_{1}(-1)=1+x, & P_{2}(-1)=1-x, \\
P_{3}(t)=3 x^{2}-1 \\
P_{1}(t)+P_{2}(f)=2 & -3 P_{3}(f)=-9 x^{2}+3
\end{array}
$$

Recall that a vector is in the span of cristher set of vectors if it is a linear combination. So, any element of $S_{p}=n\left\{p_{1}(t), P_{2}(t), P_{3}(t)\right\}$ is a liver combination of $p_{1}(t), P_{2}(t), P_{3}(t)$.

$$
\begin{aligned}
& \text { For } \quad \text { Qxaph } 2 p_{1}(t)-p_{2}(-1)+2 p_{3}(1) \\
& \Rightarrow=2(1+x)-(1-x)+2\left(3 x^{2}-1\right) \\
&=2+2 x-1+x+6 x^{2}-2 \\
&=6 x^{2}+3 x-1
\end{aligned}
$$

