Math 2210-002/010 Quiz 4
Name: \qquad Due: 2/25/19
This is a two-stage quiz. You will receive this back with each question graded pass/fail in our next class meeting. You have until the date specified above to submit corrections for partial credit.

1. (2 points) Consider the vectors $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v}$ given below.

$$
\vec{a} \operatorname{not}: \hat{n}, \overrightarrow{S_{\rho} \times n}\{\vec{b}\}
$$

So $\{\vec{a}, \vec{b}\}$ is linearly independent.

Is $\{\mathbf{a}, \mathbf{b}, \mathbf{u}\}$ linearly independent?

$$
\text { No. } \sim \vec{u} \text { in } \operatorname{Spon}\{\vec{a}, \vec{b}\}
$$

$$
\text { Yes. } \leadsto \vec{y} \text { not in }
$$

Is $\{\mathbf{a}, \mathbf{b}, \mathbf{v}\}$ linearly independent?

$$
\text { Yes. } \sim \vec{v}
$$

2. (4 points) Consider the vectors

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right] \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right]
$$

Is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly independent? Justify your answer.
3. (4 points) Let $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$. Define a matrix transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by
$T(\mathbf{x})=\mathbf{A} \mathbf{x}$ for each \mathbf{x} in \mathbb{R}^{3}.
If $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$, find the images $T(\mathbf{u})$ and $T(\mathbf{v})$ of \mathbf{u} and v in \mathbb{R}^{2}. $T(\vec{u})=A \vec{u}=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{l}3 \\ 4\end{array}\right]+\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{l}9 \\ 12\end{array}\right]$.
$T(\vec{u})=\left[\begin{array}{ll}1 & 3 \\ 2 & 5 \\ 2\end{array}\right]\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]-\left[\begin{array}{l}3 \\ 4\end{array}\right]+\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{l}4 \\ 6\end{array}\right]$

$$
\Longrightarrow\left(\mathbf{u}_{\text {points }}\right) \text { Bonus: If } \mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } \mathbf{e}_{\mathbf{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text {, express } T(\mathbf{u}) \text { and } T(\mathbf{v}) \text { as linear }
$$

$$
\text { combinations of } T\left(\mathbf{e}_{\mathbf{1}}\right), T\left(\mathbf{e}_{2}\right) \text { and } T\left(\mathbf{e}_{\mathbf{3}}\right)
$$

