Math 2210-002/010 Quiz 4 Name: ______ Due: 2/25/19 This is a two-stage quiz. You will receive this back with each question graded pass/fail in our next class meeting. You have until the date specified above to submit corrections for partial credit.

1. (2 points) Consider the vectors **a**, **b**, **u**, **v** given below.

3. (4 points) Let
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$
. Define a matrix transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ by
 $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^3 .
If $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, find the images $T(\mathbf{u})$ and $T(\mathbf{v})$ of \mathbf{u} and v in \mathbb{R}^2 .
 $T(\vec{u}) = Ac = \begin{bmatrix} 1 & 3 & c \\ 2 & 4 & c \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = -\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

•

Bonus: If
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, express $T(\mathbf{u})$ and $T(\mathbf{v})$ as linear
combinations of $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$ and $T(\mathbf{e}_3)$.

T is a metrix drasfurnation so T is linear.
So, as $\mathbf{u} = \mathbf{e}_1 + \mathbf{c}_2 + \mathbf{e}_3$ and $\mathbf{j} = 2\mathbf{e}_1 - \mathbf{e}_2 + \mathbf{e}_3$
We have $\begin{bmatrix} T(\mathbf{u}) = T(\mathbf{e}_1) + T(\mathbf{e}_2) + T(\mathbf{e}_3) \\ T(\mathbf{u}) = 2T(\mathbf{e}_1) - T(\mathbf{e}_2) + T(\mathbf{e}_3) \end{bmatrix}$.