\qquad Key
This quiz will be graded with partial credit.

1. (10 points) If possible, diagonalize

$$
A=\left[\begin{array}{ccc}
-2 & 2 & 0 \\
0 & -1 & 0 \\
0 & -2 & -2
\end{array}\right]
$$

That is find matices P and D such that $A=P D P^{-1}$ with D diagonal.
Eigenvalues:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
-2-\lambda & 2 & 0 \\
0 & -1-\lambda & 0 \\
0 & -2 & -2-\lambda
\end{array}\right|=(-2-\lambda)\left|\begin{array}{cc}
-1-\lambda & 0 \\
-2 & -2-\lambda
\end{array}\right| \\
&=(-2-\lambda)^{2}(-1-\lambda) \\
& \Rightarrow \lambda_{1}=-2, \lambda_{2}=-1
\end{aligned}
$$

So,
2 lively indpenteat e.vectors $\quad \vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] . \quad \Longrightarrow \begin{aligned} & x_{1}, x_{3} \text { free } \\ & x_{2}=0\end{aligned}$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
\left.A-\lambda_{2}\right] & 0
\end{array}\right]=[A+I \quad 0}
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

So $\vec{v}_{3}=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$ is an e.vectur for λ_{2}.

$$
\Rightarrow x_{1}=x_{3}, 2 x_{2}=-x_{3}
$$

$$
\Rightarrow P=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & -1 \\
0 & 1 & 2
\end{array}\right], D=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \text { and } \quad \begin{aligned}
& x_{3} \text { free } \\
& A=P D P^{-1}
\end{aligned}
$$

