partial credit.

1. (5 points) Recall that $M_{2\times 2}$ is the vector space of 2×2 matrices with real entries. Verify that the addition of this vector space (the usual addition of matrices) satisfies axiom 3 of the 10 vector space axioms:

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V we have $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

2. (5 points) Consider the vector space \mathbb{P}_3 (the space of polynomials of degree at most 3). Three vectors in this space are

$$p_1(t) = 1 + t$$

 $p_2(t) = 1 - t$
 $p_3(t) = 3t^2 - 1$.

Give 5 vectors from \mathbb{P}_3 that are elements of Span $\{p_1, p_2, p_3\}$.

$$P_{2}^{(h)}=1+t$$
 $P_{2}^{(h)}=1-t$
 $P_{3}^{(h)}=1-t$
 $P_{4}^{(h)}=1-t$
 $P_{5}^{(h)}=3t^{2}-1$
 $P_{5}^{(h)}=3t^{2}-1$
 $P_{7}^{(h)}=-1-t$
 $P_{7}^{(h)}=-1-t$