Math 2210-002/010 Quiz 5
Name:

This is a two-stage quiz. You will receive this back with each question graded pass/fail in our next class meeting. You have until the date specified above to submit corrections for partial credit.

1. (3 points) The figure below shows vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} along with the images $T(\mathbf{u})$ and $T(\mathbf{v})$ under the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Carefully sketch and label the image $T(\mathbf{w})$ of \mathbf{w} under T.

we see $\vec{u}=\vec{u}+2 \vec{v}$

So $T(\vec{\omega})=T(\hat{u})+2 T(v)$.
2. (3 points) Consider a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left(\left[\begin{array}{c}
1 \\
-2 \\
-3 \\
4
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
-2 \\
2 \\
3 \\
-5
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 \\
5
\end{array}\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
7
\end{array}\right]}
\end{array}\right.
$$

B_{4} livest: $\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ 0 \\ 3\end{array}\right]+\left[\begin{array}{c}-2 \\ 4 \\ -5\end{array}\right]$
3. (4 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation which reflects a vector across the x_{2} axis before rotating it counterclockwise by $\pi / 2$ radians. Find the standard matrix of T.

$$
\begin{aligned}
& \text { so } T\left(\hat{e}_{1}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], T\left(\hat{e}_{2}\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& \Rightarrow A=\left[T\left(\hat{e}_{1}\right) T\left(\hat{e}_{2}\right)\right]\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] .
\end{aligned}
$$

