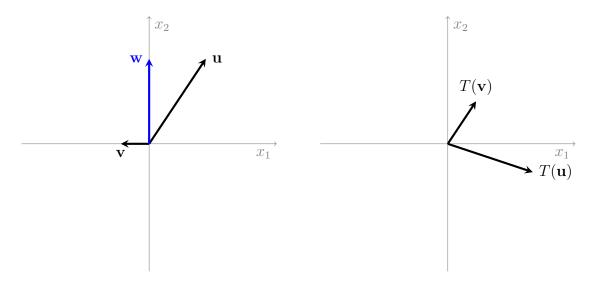
This is a two-stage quiz. You will receive this back with each question graded pass/fail in our next class meeting. You have until the date specified above to submit corrections for partial credit.

1. (3 points) The figure below shows vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} along with the images $T(\mathbf{u})$ and $T(\mathbf{v})$ under the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$. Carefully sketch and label the image $T(\mathbf{w})$ of \mathbf{w} under T.

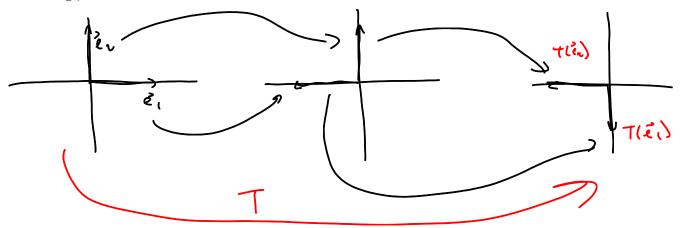


2. (3 points) Consider a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^2$ such that

$$T\left(\begin{bmatrix}1\\-2\\-3\\4\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix} \text{ and } T\left(\begin{bmatrix}-2\\2\\3\\-5\end{bmatrix}\right) = \begin{bmatrix}-1\\5\end{bmatrix}.$$

Compute
$$T \begin{pmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \end{pmatrix}$$
.

3. (4 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation which reflects a vector across the x_2 axis before rotating it counterclockwise by $\pi/2$ radians. Find the standard matrix of T.



So
$$T(\hat{e}_1) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
, $T(\hat{e}_2) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$