Math 2210-002/010 Quiz 3 Name:
9/18/19
This quiz will be graded with partial credit.

1. (4 points) The vectors $\mathbf{a}, \mathbf{b}, \mathbf{p}$ and $\mathbf{q}$ from $\mathbb{R}^{2}$ are graphed below. Note that $\mathbf{p}$ and $\mathbf{q}$ are in $\operatorname{Span}\{\mathbf{a}, \mathbf{b}\}$.

(i) (2 points) Based on the figure above, express $\mathbf{p}$ as a linear combination of $\mathbf{a}$ and b.
(ii) (2 points) Based on the figure above, express $\mathbf{q}$ as a linear combination of $\mathbf{a}$ and b.
2. (6 points) Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & -4 & 3 \\
-1 & -2 & 7
\end{array}\right]
$$

Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}2 \\ -4 \\ -2\end{array}\right]$ and $\mathbf{a}_{3}=\left[\begin{array}{c}-1 \\ 3 \\ 7\end{array}\right]$ be the columns of $A$.
(i) (4 points) Is $\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 5\end{array}\right]$ a linear combination of the columns of $A$ ? If so, give weights $x_{1}, x_{2}$ and $x_{3}$ that witness this. If not, justify why.
(ii) (2 points) Let $\mathbf{b}$ be any vector in $\mathbb{R}^{3}$. Does the equation $A \mathbf{x}=\mathbf{b}$ necessarily have a solution? Justify your answer.

