Surface integrals

1. Evaluate the surface integral $\iint_{S} x d S$ if S is the helicoid $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle$ with $(u, v) \in$ $[0,1] \times[0, \pi]$.
2. Evaluate the surface integral $\iint_{S} 2 d S$ if S is the portion of the plane $2 x+3 y+z=6$ in the first octant.
3. Evaluate the surface integral $\iint_{S} x^{2} z^{2} d S$ if S is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ with $1 \leqslant z \leqslant 4$.
4. Give two orientations of the surface S given by the graph of $z=g(x, y)$ for $(x, y) \in D$. (Hint: Parametrize the surface by $r(x, y)=\langle x, y, g(x, y)\rangle$ with $(x, y) \in D$.)
5. Let $\mathbf{F}=\left\langle e^{y z}, x z e^{y z}, x y e^{y z}\right\rangle$.
(a) If S is the portion of the $x z$-plane with $-1 \leqslant x \leqslant 1$ and $0 \leqslant z \leqslant 1$ oriented in the direction of the positive y-axis, evaluate the surface integral $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$.
(b) Show that \mathbf{F} is a conservative vector field.
(c) If S is the surface $z=\sqrt{x^{2}+y^{2}}$ with $0 \leqslant z \leqslant 4$ and outward orientation, evaluate the surface integral $\iint_{S} \operatorname{curl} \mathbf{F} \bullet d \mathbf{S}$.
(d) If C is the curve of intersection between the cylinder $x^{2}+y^{2}=4$ and the plane $3 x-2 y+7 z=12$. (What is the shape of this intersection?) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
6. Let $\mathbf{F}=\langle-y, z,-x\rangle$.
(a) If S is the surface $x^{2}+y^{2} \leqslant 4, z=0$, with upward orientation, evaluate $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$.
(b) Compute curl \mathbf{F}.
(c) If S is the portion of the surface $z=4-x^{2}-y^{2}$ with $z \geqslant 0$ and upward orientation, evaluate the surface integral $\iint_{S} \operatorname{curl} \mathbf{F} \bullet d \mathbf{S}$.
