Surface integrals

- 1. Evaluate the surface integral $\iint_{S} x \, dS$ if S is the helicoid $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle$ with $(u, v) \in [0, 1] \times [0, \pi]$.
- 2. Evaluate the surface integral $\iint_{S} 2 \, dS$ if S is the portion of the plane 2x + 3y + z = 6 in the first octant.
- 3. Evaluate the surface integral $\iint_{S} x^2 z^2 dS$ if S is the portion of the cone $z = \sqrt{x^2 + y^2}$ with $1 \le z \le 4$.
- 4. Give two orientations of the surface S given by the graph of z = g(x, y) for $(x, y) \in D$. (*Hint:* Parametrize the surface by $r(x, y) = \langle x, y, g(x, y) \rangle$ with $(x, y) \in D$.)

5. Let
$$\mathbf{F} = \langle e^{yz}, xze^{yz}, xye^{yz} \rangle$$

- (a) If S is the portion of the xz-plane with $-1 \le x \le 1$ and $0 \le z \le 1$ oriented in the direction of the positive y-axis, evaluate the surface integral $\iint \mathbf{F} \cdot d\mathbf{S}$.
- (b) Show that **F** is a conservative vector field.
- (c) If S is the surface $z = \sqrt{x^2 + y^2}$ with $0 \le z \le 4$ and outward orientation, evaluate the surface integral $\iint \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.
- (d) If C is the curve of intersection between the cylinder $x^2 + y^2 = 4$ and the plane 3x 2y + 7z = 12. (What is the shape of this intersection?) Evaluate the line integral $\int_{-\infty}^{\infty} \mathbf{F} \cdot d\mathbf{r}$.

6. Let
$$\mathbf{F} = \langle -y, z, -x \rangle$$
.

- (a) If S is the surface $x^2 + y^2 \leq 4$, z = 0, with upward orientation, evaluate $\iint \mathbf{F} \cdot d\mathbf{S}$.
- (b) Compute curl **F**.
- (c) If S is the portion of the surface $z = 4 x^2 y^2$ with $z \ge 0$ and upward orientation, evaluate the surface integral $\iint_{\alpha} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.