Curl and divergence

1. For each of the following, either compute the expression or explain why it doesn't make sense (i.e. is not defined). Assume that $f(x, y, z)=x^{2} y+x z-1$ and $\mathbf{F}=\langle z, x, y\rangle$.
For example, we can say $\operatorname{div} f$ does not make sense as div is an operation defined on vector fields, not scalar functions.
(a) $\operatorname{div}(\operatorname{curl} f)$
(b) $\operatorname{div}(\operatorname{curl} \mathbf{F})$
(c) $\operatorname{curl}(\operatorname{div} \mathbf{F})$
(d) $\operatorname{curl}(\operatorname{div} \mathbf{f})$
(e) $\operatorname{div}(\operatorname{div} \mathbf{F})$
(f) $\nabla f \bullet \mathbf{F}$
(g) $\operatorname{curl}(\nabla f)$
(h) $\operatorname{curl} \mathbf{F}+\operatorname{div} \mathbf{F}$
(i) $\operatorname{div}(\nabla f+\mathbf{F})$
2. Using the same scalar function $f(x, y, z)$ and vector field $\mathbf{F}=\langle z, x, y\rangle$ given above, evaluate each of the following expressions. You may use the fundamental theorem for line integrals or Green's theorem if they apply.

Hint: They will in all but one case.
(a) $\int_{C_{1}} \operatorname{curl} \mathbf{F} \bullet d \mathbf{r}$ where C_{1} is the line segment from $(-1,3,5)$ to $(3,-1,-2)$.
(b) $\int_{C_{2}} \nabla f \bullet d \mathbf{r}$ where C_{2} is the portion of the parabola given by $\mathbf{r}(t)=\left\langle t^{2}, t, 3 t\right\rangle$ with $-1 \leqslant t \leqslant 1$.
(c) $\int_{C_{3}} \operatorname{div} \mathbf{F} d s$ where C_{3} is the curve given by $\mathbf{r}(t)=\left\langle e^{t^{2}}, \ln \left(t^{3}+1\right), 1\right\rangle$ with $t \in[0,5]$.
(d) $\int_{C_{4}} \operatorname{curl} \mathbf{F} \bullet d \mathbf{r}$ where C_{4} is the ellipse given by $\mathbf{r}(t)=\langle\cos t, \sin t, \cos t\rangle$ with $t \in[0,2 \pi]$.
3. Optional: Assuming the appropriate partial derivatives exist and are continuous for a scalar function f and vector field $\mathbf{F}=\langle P, Q, R\rangle$ show that div and curl satisfy familiar rules of differentiation.
(a) Prove $\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+F \cdot \nabla f$.
(b) Prove curl $(f \mathbf{F})=f \operatorname{curl} \mathbf{F}+(\nabla f) \times \mathbf{F}$.
4. Optional: Assuming the continuity of the appropriate partial derivatives, we have seen that all vector fields of the form $\mathbf{F}=\nabla g$ satisfy the equation $\operatorname{curl} F=0$ and that vector fiels of the form $\mathbf{F}=\operatorname{curl} G$ satisfy the equation $\operatorname{div} F=0$. This suggests the question:
are there any equations that all functions of the form $f=\operatorname{div} \mathbf{G}$ must satisfy?
Show the answer to this question is "No." by proving that every continuous function on \mathbb{R}^{3} is the divergence of some vector field.
Hint: If $g(x, y, z)=\int_{0}^{x} f(t, y, z) d t$ then what is $\frac{\partial g}{\partial x}$?

