Green's Theorem

- 1. Compute $\int_C y^2 dx + 3xy dy$ where C is the boundary of the semiannular region D in the upper half-plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 2. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F} = \langle y \cos x xy \sin x, xy + x \cos x \rangle$ and C is the triangle formed by going from (0,0) to (2,4) to (2,0) and back to (0,0).
- 3. Suppose **F** is a conservative vector field. Use Green's theorem to prove that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any closed curve *C* (that is smooth and does not self-intersect).

Hint: Recall that if $\mathbf{F} = \langle P, Q \rangle$ then we know how $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ relate.

- 4. Let $\mathbf{F}(x,y) = \langle y^2, x^2y \rangle$ and *C* is the rectangle with vertices (0,0), (5,0), (5,4), and (0,4) and positive orientation. Consider the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$.
 - (a) Compute the line integral directly.
 - (b) Compute this line integral using Green's theorem.