\qquad

Green's Theorem

1. Compute $\int_{C} y^{2} d x+3 x y d y$ where C is the boundary of the semiannular region D in the upper half-plane between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
2. Compute $\int_{C} \mathbf{F} \bullet d \mathbf{r}$ if $\mathbf{F}=\langle y \cos x-x y \sin x, x y+x \cos x\rangle$ and C is the triangle formed by going from $(0,0)$ to $(2,4)$ to $(2,0)$ and back to $(0,0)$.
3. Suppose \mathbf{F} is a conservative vector field. Use Green's theorem to prove that $\int_{C} \mathbf{F} \bullet d \mathbf{r}=0$ for any closed curve C (that is smooth and does not self-intersect).
Hint: Recall that if $\mathbf{F}=\langle P, Q\rangle$ then we know how $\frac{\partial P}{\partial y}$ and $\frac{\partial Q}{\partial x}$ relate.
4. Let $\mathbf{F}(x, y)=\left\langle y^{2}, x^{2} y\right\rangle$ and C is the rectangle with vertices $(0,0),(5,0),(5,4)$, and $(0,4)$ and positive orientation. Consider the line integral $\int_{C} \mathbf{F} \bullet d \mathbf{r}$.
(a) Compute the line integral directly.
(b) Compute this line integral using Green's theorem.
