The fundamental theorem for line integrals

1. Let $f(x, y)=3 x+x^{2} y^{2}$ and C be the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $(4,1 / 4)$. Compute $\int_{C} \nabla f \cdot d \mathbf{r}$.
2. (a) Is $\mathbf{F}(x, y)=\left\langle x y+y^{2}, x^{2}+2 x y\right\rangle$ conservative? Justify your answer and if so, provide a potential function f for \mathbf{F}, that is, f such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \bullet d \mathbf{r}$ where C is the line segment from $(0,0)$ to $(1,1)$.
3. (a) Is $\mathbf{F}(x, y)=\left\langle x^{2} y^{3}, x^{3} y^{2}\right\rangle$ conservative? Justify your answer and if so, provide a potential function f for \mathbf{F}, that is, f such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \bullet d \mathbf{r}$ where C is given by $\mathbf{r}(t)=\left\langle t^{3}-2 t, t^{3}+2 t\right\rangle$ for $t \in[0,1]$
4. Let C be the curve which starts at $(1 / 2,0)$ and traces the ellipse $4 x^{2}+9 y^{2}=1$ in the counterclockwise direction, only once. If $\mathbf{F}(x, y)=\left\langle y^{2} e^{x y},(1+x y) e^{x y}\right\rangle$, calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
5. Let $\mathbf{F}(x, y, z)=\langle y z, x z, x y+2 z\rangle$.
(a) Given that \mathbf{F} is conservative, find a potential function f for \mathbf{F}.
(b) If C is the line segment from $(1,0,-2)$ to $(4,6,3)$, use the fundamental theorem for line integrals to compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
