\qquad

Line integrals of scalar functions

1. (a) Evaluate $\int_{C} 1-x y d s$ if C is the upper half of the circle $x^{2}+y^{2}=4$.
(b) Evaluate $\int_{C} x \sin z d s$ where C is the circular helix given by the equations $x=\cos t, y=\sin t$, and $z=t$ for $t \in[0,2 \pi)$.
2. (a) Set up the line integral $\int_{C} 2 x+3 y$ if C is the triangle formed by going from $(0,0)$ to $(2,0)$ to $(0,1)$ and back to $(0,0)$.
(b) Evaluate the line integral $\int_{C} x y+z$ if C is the curve formed by following the helix in problem 1 b from $(1,0,0)$ to $(1,0,2 \pi)$ then following the line segment from $(1,0,2 \pi)$ back to $(1,0,0)$.

Previously, we have seen that integrals over the constant 1 have a valuable geometric interpretation. Namely, we have seen that

$$
\begin{aligned}
\int_{I} 1 d x & =\text { the length of the interval } I \\
\iint_{D} 1 d A & =\text { the area of the region } D \\
\iiint_{E} 1 d V & =\text { the volume of the solid } E
\end{aligned}
$$

With this in mind, what would you suppose $\int_{C} 1 d s$ gives you geometrically? Indeed, it is much the same: if C is parametrized by $\mathbf{r}(t)$ for $t \in[a, b]$ then

$$
\int_{C} 1 d s=\int_{C} d s=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=s=\text { the arc length of } C
$$

3. (a) Compute $\int_{C} d s$ where C is the circle of radius 5 centered at $(1,1)$.
(b) Compute $\int_{C} \frac{e}{8 \pi} d s$ where C is the square formed by going from $(0,0)$ to $(2,0)$ to $(2,2)$ to $(0,2)$ and back to $(0,0)$.

Recall that we define line integrals with respect to a single variable by

$$
\int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \quad \text { and } \quad \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
$$

and for functions $P(x, y)$ and $Q(x, y)$, we abbreviate a sum of these integrals by

$$
\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y
$$

4. (a) Let C be the line segment from $(1,1)$ to $(4,0)$. Evaluate $\int_{C} x^{2} d y$.
(b) Let C be the graph of $y=x$ from $(2,2)$ to (4,4). Evaluate $\int x y d x+\cos x d y$ We can define line integrals over space curves with respect to a single variable similarly:

$$
\begin{aligned}
& \int_{C} f(x, y, z) d x=\int_{a}^{b} f(x(t), y(t), z(t)) x^{\prime}(t) d t ; \\
& \int_{C} f(x, y, z) d y=\int_{a}^{b} f(x(t), y(t), z(t)) y^{\prime}(t) d t ; \\
& \int_{C} f(x, y, z) d z=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t .
\end{aligned}
$$

Likewise, we abbreviate sums of these integrals similarly. If P, Q and R are functions of x, y and z then we write

$$
\int_{C} P(x, y, z) d x+\int_{C} Q(x, y, z) d y+\int_{C} R(x, y, z) d z=\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z .
$$

5. Evaluate $\int_{C} y d x+z d y+x d z$, where C is the line segment from $(2,0,0)$ to $(3,4,5)$.

Hint: You may wish to compare your work with example 6 from section 16.2 of your textbook.

