Line integrals of vector fields

1. Match each plot with one of the vector fields below. Images created on https://kevinmehall.net/p/equationexplorer/vectorfield.html

- (a) $\mathbf{F}(x,y) = \langle y,x \rangle$
- (b) $\mathbf{F}(x,y) = \langle x,y \rangle$
- (c) $\mathbf{F}(x,y) = \langle x, -y \rangle$
- (d) $\mathbf{F}(x,y) = \langle x,1 \rangle$
- 2. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F}(x, y) = \langle xy, 3y^2 \rangle$ and C is the curve given by $x = 11t^4$, $y = t^3$ with $0 \leq t \leq 1$.

3. Match each plot with one of the vector fields below. Image taken from Stewart (8th edition).

- (a) $\mathbf{F}(x, y, z) = \langle 1.2, 3 \rangle$
- (b) **F** $(x, y, z) = \langle 1, 2, z \rangle$
- (c) $\mathbf{F}(x, y, z) = \langle x, y, 3 \rangle$
- (d) $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$
- 4. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F}(x, y, z) = \langle x, y, xy \rangle$ and C is the curve given by $x = \cos t$, $y = \sin t$, z = t for $t \in [0, \pi)$.
- 5. Consider the force field $\mathbf{F}(x, y) = \langle x^2, xy \rangle$.
 - (a) If a particle moves once around the circle $x^2 + y^2 = 4$ in the counter-clockwise direction, find the work done by the given force field on the particle.
 - (b) Does anything change if the particle moves around the circle in the clockwise direction instead?
- 6. Show that a constant force field does zero work on a particle that moves once around the circle $x^2 + y^2 = 1$. Is the work still zero if the radius is not 1?