Triple integrals in cylindrical coordinates

- 1. Compute $\iiint_E z \, dV$ where E is the region enclosed by the paraboloid $z = x^2 + y^2$ and z = 4
- 2. Compute $\iiint_E yz \, dV$ where E is the region above z=0, below z=y, and inside $x^2+y^2=4$.
- 3. Find the volume contained above $z = x^2 + y^2$ and below $z = \sqrt{x^2 + y^2}$.
- 4. Sketch the solid whose volume is given by the iterated integral.

(a)
$$\int_{\pi/2}^{3\pi/2} \int_0^4 \int_{-1}^2 r \, dz \, dr \, d\theta$$

(b)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2} \int_{r^{2}}^{4} r \, dz \, dr \, d\theta$$

(c)
$$\int_{0}^{2} \int_{0}^{2\pi} \int_{0}^{r} r \, dz \, d\theta \, dr$$