## Triple integrals (in Cartesian coordinates)

1. Compute the iterated triple integral.
(a) $\int_{-1}^{2} \int_{0}^{1} \int_{0}^{3} x y+z^{2} d z d y d x$
(b) $\int_{0}^{\pi / 2} \int_{0}^{y} \int_{0}^{x} \cos (x+y+z) d z d x d y$
2. Compute $\iiint_{E} x y d V$ where $E=\{(x, y, z): 0 \leqslant x \leqslant 3,0 \leqslant y \leqslant x, 0 \leqslant z \leqslant x+y\}$.
3. Compute $\iiint_{E} x^{2} d V$ where $E$ is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.

Similar to what we have seen with single and double integrals, the triple integral $\iiint_{E} 1 d V$ has a geometric meaning. Where $\int_{I} 1 d x$ computed the length of the interval $I$ and $\iint_{D} 1 d A$ computed the area of the region $D$, now $\iiint_{E} 1 d V$ computes the volume of the region $E$. This is a chief application of the triple integral as many volumes we can bound in space do not have a simple formula to compute their volume. On the right is a figure of what is referred to as a "bumpy sphere." This object has beeen used to model cancer tumors. To divine the volume of such a tumor, one must use multivariate calculus.
4. Find the volume of tetrahedron specified in problem 3.
5. Sketch the solid whose volume is given by the following iterated
 integral:
(a) $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2 z} d y d z d x$
(b) $\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} \cos (x+y+z) d x d z d y$
6. Setup but do not evaluate an iterated triple integral which gives the volume bounded by $x^{2}+y^{2}+x^{2}=4$ and $z=\sqrt{x^{2}+y^{2}}$.
7. Optional: Find the volume specified in problem 6.

Hint: View the region as type $z$ and use polar coordinates to compute the resulting double integral. (Don't forget $r d r d \theta$ !)
8. Write the other 5 integrals that are equivalent to

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

