Double integrals in polar coordinates

- 1. Let D be the region in the first quadrant of xy-plane given by $1 \le x^2 + y^2 \le 4$. Set up and evaluate a double integral of the function f(x, y) = xy over the region.
- 2. Evaluate each of the following double integrals by converting to polar coordinates.

(a)
$$\int_{-1}^{0} \int_{0}^{\sqrt{1-x^2}} 8x^3 y \, dy \, dx$$

(b)
$$\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^2}} e^{x^2+y^2} \, dx \, dy$$

3. Let D be the region in the third quadrant enclosed by y = x, y = 0 and $x^2 + y^2 = 16$.

(a) Sketch the region D.

(b) Write the double integral
$$\iint_{D} \frac{3x^2}{y} dA$$
 in polar coordinates (do not evaluate).

- 4. Suppose we want to find the volume between the planes z = y and z = 0 inside the cylinder $x^2 + y^2 = 4$.
 - (a) Evaluate $\iint_D y \, dA$ where D is the region $x^2 + y^2 \leq 4$. Why is this not the desired volume?
 - (b) Try to sketch the volume we are looking for: sketch the plane z = y, then the cylinder $x^2 + y^2 = 4$. Now use symmetry and a double integral to compute the volume described above.