Finding and classifying the extrema of a function

1. Find and classify all critical points of $f(x, y)=x^{3}-6 x y-y^{2}$.
2. Find and classify all critical points of $f(x, y)=5 x y e^{-y^{2}}$.
3. Find and classify all critical points of $f(x, y)=\sin (x) \sin (y)$ in the rectangle where $-\pi<x<\pi$ and $-\pi<y<\pi$.
4. Show that the function $f(x, y)=x^{3}$ has infinitely many critical points but the second derivative test fails at each one (i.e. $\left|H_{f}\right|=D=0$ at each point).
5. True of false: if (a, b) is a critical point of $f(x, y)$ and both $f_{x x}(a, b)>0$ and $f_{y y}(a, b)>0$, then (a, b) must be a local minimum.
6. (a) Show that $(0,0)$ is the only critical point of $f(x, y)=x^{2}+4 x y+y^{2}$.
(b) Show that both $f_{x x}(0,0)$ and $f_{y y}(0,0)$ are positive.
(c) Classify the critical point $(0,0)$.
(d) How does this relate to question 5 ?
7. Find and classify all critical points of $f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}$.
8. Find the shortest distance from the point $(1,0,-2)$ to the plane $x+2 y+z=4$.

Hint: The distance between a point (x, y, z) and $(1,0,-2)$ is given by $\sqrt{(x-1)^{2}+y^{2}+(z+2)^{2}}$. How can you ensure a point (x, y, z) and is on the plane and minimize this quantity simultaneously?

