The gradient vector and the directional derivative

1. Consider the function $f(x, y)=x^{2} y+6 x y$ at the point $(1,2)$.
(a) What is the gradient of $f(x, y)$?
(b) Find directional derivative of f at $(1,2)$ in the direction $\langle 3,4\rangle$.
(c) Find the direction of steepest ascent. Give your answer as a unit vector with this direction.
(d) Find the maximum derivative of f at $(1,2)$. That is, find the rate of change in the direction of steepest ascent.
(e) What is the direction of steepest descent?
(f) What is the minimum derivative of f at $(1,2)$?
2. In general, for a function f the maximum derivative (a, b) is given by \qquad and is in the direction of \qquad . Similarly, the minimum derivative at $(a, b) \mathrm{s}$ given by \qquad and is in the direction of \qquad .
3. A contour plot of $f(x, y)$ is given below for $z=0,1,2,3,4$ where the outermost level curve is $z=0$ and the innermost is $z=4$. Sketch the gradient vector at the two points A and B plotted on the level curves $z=4$ and $z=1$ respectively.

4. The function $A(x, y)=4000+3 x y-4 x^{2}-5 y^{2}$ gives the altitude in feet at any point (x, y) on a hill (we can think of the (x, y) coordinates as specifying latitude and longitude). We are currently on the hill at $(-1,2)$.
(a) What is our current altitude?
(b) If we begin moving in the direction of the vector $\langle 1,7\rangle$, what will the initial slope be?
(c) Find a vector (not necessarily unit) that points in a direction in which the initial slope will be 0 .
5. Consider the function $h(r, s, t)=\ln (3 r+6 s+9 t)$.
(a) Find the directional derivative at $(1,1,1)$ in the direction of $\overrightarrow{\mathbf{v}}=\langle 4,12,6\rangle$.
(b) What is the direction of the maximum directional derivative of h at $(1,1,1)$?
(c) What is the maximum derivative?
