The gradient vector and the directional derivative

- 1. Consider the function $f(x, y) = x^2y + 6xy$ at the point (1, 2).
 - (a) What is the gradient of f(x, y)?
 - (b) Find directional derivative of f at (1, 2) in the direction $\langle 3, 4 \rangle$.
 - (c) Find the direction of steepest ascent. Give your answer as a unit vector with this direction.
 - (d) Find the maximum derivative of f at (1,2). That is, find the rate of change in the direction of steepest ascent.
 - (e) What is the direction of steepest *descent*?
 - (f) What is the minimum derivative of f at (1, 2)?
- In general, for a function f the maximum derivative (a, b) is given by ______ and is in the direction of ______. Similarly, the minimum derivative at (a, b) s given by ______ and is in the direction of ______.
- 3. A contour plot of f(x, y) is given below for z = 0, 1, 2, 3, 4 where the outermost level curve is z = 0and the innermost is z = 4. Sketch the gradient vector at the two points A and B plotted on the level curves z = 4 and z = 1 respectively.

- 4. The function $A(x,y) = 4000 + 3xy 4x^2 5y^2$ gives the altitude in feet at any point (x,y) on a hill (we can think of the (x,y) coordinates as specifying latitude and longitude). We are currently on the hill at (-1,2).
 - (a) What is our current altitude?
 - (b) If we begin moving in the direction of the vector $\langle 1, 7 \rangle$, what will the initial slope be?
 - (c) Find a vector (not necessarily unit) that points in a direction in which the initial slope will be 0.
- 5. Consider the function $h(r, s, t) = \ln(3r + 6s + 9t)$.
 - (a) Find the directional derivative at (1, 1, 1) in the direction of $\vec{\mathbf{v}} = \langle 4, 12, 6 \rangle$.
 - (b) What is the direction of the maximum directional derivative of h at (1, 1, 1)?
 - (c) What is the maximum derivative?