Tangent planes and linearization

1. (a) Find the plane tangent to $f(x, y)=\sqrt{x y}$ at $(4,9,6)$.
(b) Use this to approximate the value of $f(4,10)$.
(c) If $\sqrt{40} \approx 6.32$, what is the approximate error of your estimation in part 1 b ?
2. (a) Find the linearization $L(x, y)$ of $f(x, y)=e^{x} \cos (x y)$ at the point $(0,0)$.
(b) Use this to approximate the value of $e \cos (1)$.
(c) If $e \cos (1) \approx 1.47$, what is the approximate error of your estimation in part 2 b ?
(d) Approximate the value of $\sqrt{e} \cos (0.5)$.
(e) If $\sqrt{e} \cos (0.5) \approx 1.45$, what is the approximate error in your estimation in part 2 d ?
(f) Compare the errors you found in parts 2 c and $2 e$. Which one is "better?" Explain why this would be expected.
3. Find an equation of the plane tangent to $x^{2}+y^{2}+z^{2}=1$ at $(1,1,-1)$.
4. Find an equation of the plane tangent to $z^{2}-x^{2} y^{2}=9$ when $x=y=2$.
5. Optional: Discuss in your group what the "tangent object" would be to graph of a three variable function.
