Vector-valued functions part 1

1. Give a vector function for each of the following curves, including the appropriate range of t-values.
(a) A circle in the plane $x=4$ centered at $(4,0,0)$ with radius 3 , traced once.
(b) The portion of the curve in the $x y$-plane with equation $y=\sqrt{x+1}$ from $(0,1,0)$ to $(3,2,0)$.
(c) The portion of the curve in the plane $y=-1$ with equation $x=z^{2}-z+2$ from $(2,-1,1)$ to $(8,-1,3)$.
2. Consider the curve given by the vector function $\mathbf{r}(t)=\left\langle t^{2}, 1-3 t, 1+t^{3}\right\rangle$.
(a) Find the value(s) of t for which the curve passes through the points $(1,4,0)$ and $(9,-8,28)$.
(b) Show that the curve does not pass through the point $(4,7,-6)$.

We say that two curves $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ intersect if they ever pass through the same point and that they collide if they cross at the same time.

For example, the curves $\mathbf{r}_{1}(t)=\langle t-1,0\rangle$ and $\mathbf{r}_{2}(t)=\langle\cos t, \sin t\rangle$ intersect at points $(-1,0)$ and $(1,0)$ but they do not collide. Before continuing, reflect upon why this is the case.
3. Two curves $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(s)$ intersect if there are t_{0} and s_{0} such that $\mathbf{r}_{1}\left(t_{0}\right)=\mathbf{r}_{2}\left(s_{0}\right)$. These curves collide here if \qquad .
4. Suppose two missiles are fired with trajectories given by the vector functions

$$
\mathbf{r}_{1}(t)=\left\langle(t-4)^{2}, t^{2}-8 t+34,(t-4)^{2}\right\rangle \quad \text { and } \quad \mathbf{r}_{2}(t)=\left\langle 4 t-19,(t-4)^{3}, 5 t-26\right\rangle
$$

Assuming $t \geqslant 0$, will these missiles collide? If so, when?
Hint: It may be helpful to rename the variable in the second trajectory as s, namely $\mathbf{r}_{2}(s)=\langle 4 s-$ $\left.19,(s-4)^{3}, 5 s-26\right\rangle$.
5. Find an equation for the line tangent to the curve $\mathbf{r}(t)=\left\langle e^{t}, t e^{t}, t e^{t^{2}}\right\rangle$ at the point $(1,0,0)$.

