$\S 12.3$ and 12.4 The dot and cross products:

Due: Beginning of class, $9 / 6$

1. How do $\hat{\mathbf{a}} \bullet \hat{\mathbf{a}}$ and $|\hat{\mathbf{a}}|$ relate?
2. Find the angle between $\langle\sqrt{3}, 1\rangle$ and $\langle 1, \sqrt{3}\rangle$.
3. Give a formula for the angle between two vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$.
4. Suppose two vectors are orthogonal, what does this tell you about their dot product?
5. If $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}=0$, what can you say about the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$?

Fact: Two vectors are orthogonal if and only if their dot prouduct is \qquad .
6. Suppose $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}}= \pm|\hat{\mathbf{a}}||\hat{\mathbf{b}}|$. What can you say about $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$? What is the angle between $\langle 2,4\rangle$ and $\langle-1,-2\rangle$?
7. Find the area of the parallelogram with points $(0,0,0),(1,2,1),(2,2,2)$ and $(3,4,3)$.
8. Suppose $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are parallel, what can you say about the area of the parallelogram they span? What about $|\hat{\mathbf{a}} \times \hat{\mathbf{b}}|$?

Fact: Two vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are parallel if and only if $\hat{\mathbf{a}} \times \hat{\mathbf{b}}=$ \qquad .

$$
\hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}} \quad \hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}} \quad \hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}}
$$

9. Verify 4 of the following facts:

$$
\hat{\mathbf{j}} \times \hat{\mathbf{i}}=-\hat{\mathbf{k}} \quad \hat{\mathbf{k}} \times \hat{\mathbf{j}}=-\hat{\mathbf{i}} \quad \hat{\mathbf{i}} \times \hat{\mathbf{k}}=-\hat{\mathbf{j}}
$$

10. For vectors $\hat{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\hat{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, prove that $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$ is indeed orthogonal to $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ by computing

$$
(\hat{\mathbf{a}} \times \hat{\mathbf{b}}) \cdot \hat{\mathbf{a}} \text { and }(\hat{\mathbf{a}} \times \hat{\mathbf{b}}) \cdot \hat{\mathbf{b}} .
$$

(It may help to try this with a concrete case or two.)

