\S 12.3 and 12.4 The dot and cross products: Due: Beginning of class, 9/6

- 1. How do $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}$ and $|\hat{\mathbf{a}}|$ relate?
- 2. Find the angle between $\langle \sqrt{3}, 1 \rangle$ and $\langle 1, \sqrt{3} \rangle$.

3. Give a formula for the angle between two vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$.

4. Suppose two vectors are orthogonal, what does this tell you about their dot product?

5. If $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = 0$, what can you say about the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$?

Fact: Two vectors are orthogonal if and only if their dot prouduct is _____.

6. Suppose $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = \pm |\hat{\mathbf{a}}| |\hat{\mathbf{b}}|$. What can you say about $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$? What is the angle between $\langle 2, 4 \rangle$ and $\langle -1, -2 \rangle$?

7. Find the area of the parallelogram with points (0,0,0), (1,2,1), (2,2,2) and (3,4,3).

8. Suppose $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are parallel, what can you say about the area of the parallelogram they span? What about $|\hat{\mathbf{a}} \times \hat{\mathbf{b}}|$?

Fact: Two vectors $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are parallel if and only if $\hat{\mathbf{a}} \times \hat{\mathbf{b}} =$ _____.

9. Verify 4 of the following facts: $\hat{\mathbf{i}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}}$ $\hat{\mathbf{j}} \times \hat{\mathbf{k}} = \hat{\mathbf{i}}$ $\hat{\mathbf{k}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}}$ $\hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}}$ $\hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}}$ $\hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}}$

10. For vectors $\hat{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\hat{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$, prove that $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$ is indeed orthogonal to $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ by computing

$$(\hat{\mathbf{a}} \times \hat{\mathbf{b}}) \bullet \hat{\mathbf{a}}$$
 and $(\hat{\mathbf{a}} \times \hat{\mathbf{b}}) \bullet \hat{\mathbf{b}}$.

(It may help to try this with a concrete case or two.)