## $\S$ 12.2 Vectors: Lengths, unit vectors, and a few properties Due: Beginning of class, 9/6

Given a vector's components,  $\hat{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ , it is easy to determine its direction in  $\mathbb{R}^3$  but how might we determine the other defining property of a vector, its *magnitude*?



Give formulas to compute the length of any two dimensional or three dimensional vector. For example, if  $\hat{\mathbf{a}} = \langle a_1, a_2 \rangle$  and  $\hat{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$ , find

 $|\hat{\mathbf{a}}| =$  $|\hat{\mathbf{b}}| =$ 

We call vectors with length 1 **unit vectors**. For example, the three vectors

$$\mathbf{\hat{i}} = \langle 1, 0, 0 \rangle \quad \mathbf{\hat{j}} = \langle 0, 1, 0 \rangle \quad \mathbf{\hat{k}} = \langle 0, 0, 1 \rangle$$

are all unit vectors. These play a special role and are called the **standard basis vectors.** Sketch these to the right.

The role these basis vectors play are to decompose any vector into a sum of these three. For example,

$$\begin{aligned} \langle 2, \pi, 7 \rangle &= \langle 2, 0, 0 \rangle + \langle 0, \pi, 0 \rangle + \langle 0, 0, 7 \rangle \\ &= 2 \langle 1, 0, 0 \rangle + \pi \langle 0, 1, 0 \rangle + 7 \langle 0, 0, 1 \rangle = 2 \mathbf{\hat{i}} + \pi \mathbf{\hat{j}} + 7 \mathbf{\hat{k}} \end{aligned}$$

Suppose  $\hat{\mathbf{c}} = 2\hat{\mathbf{i}} + 7\hat{\mathbf{k}}$  and  $\hat{\mathbf{d}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ . Express  $3\hat{\mathbf{c}} + 2\hat{\mathbf{d}}$  in terms of  $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ , and  $\hat{\mathbf{k}}$ .

There are, of course, many more unit vectors than simply  $\hat{\mathbf{i}}, \hat{\mathbf{j}}$  and  $\hat{\mathbf{k}}$ . For example  $\langle 1/\sqrt{2}, 1/\sqrt{2}, 0 \rangle$ . In fact, for any vector  $\hat{\mathbf{a}}$ , we can find a unit vector  $\hat{\mathbf{u}}$  pointing in the same direction.

As  $(1/|\hat{\mathbf{a}}|)$  is a postive scalar, we have that  $\hat{\mathbf{u}} = \frac{\hat{\mathbf{a}}}{|\hat{\mathbf{a}}|}$  points in the same direction as  $\hat{\mathbf{a}}$ . Show that  $\hat{\mathbf{u}}$  is a unit vector.

Find a unit vector pointing in the opposite direction of  $2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ .

Below are several properties of vectors. Verify any 3 of these.

If 
$$\hat{\mathbf{a}}$$
,  $\hat{\mathbf{b}}$  and  $\hat{\mathbf{c}}$  are vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ , and  $c$  and  $d$  are scalars then  
1.  $\hat{\mathbf{a}} + \hat{\mathbf{b}} = \hat{\mathbf{b}} + \hat{\mathbf{a}}$  2.  $\hat{\mathbf{a}} + \hat{\mathbf{b}} + \hat{\mathbf{c}} = \hat{\mathbf{a}} + \hat{\mathbf{b}} + \hat{\mathbf{c}}$  3.  $\hat{\mathbf{a}} + \hat{\mathbf{0}} = \hat{\mathbf{a}}$   
4.  $\hat{\mathbf{a}} + (-\hat{\mathbf{a}}) = 0$  5.  $c(\hat{\mathbf{a}} + \hat{\mathbf{b}}) = c\hat{\mathbf{a}} + c\hat{\mathbf{b}}$  6.  $(c + d)\hat{\mathbf{a}} = c\hat{\mathbf{a}} + d\hat{\mathbf{a}}$   
7.  $(cd)\hat{\mathbf{a}} = c(d\hat{\mathbf{a}})$  8.  $1\hat{\mathbf{a}} = \hat{\mathbf{a}}$  9.  $|c\hat{\mathbf{a}}| = |c||\hat{\mathbf{a}}|$