\S 12.2 Vectors: Lengths, unit vectors, and a few properties

Due: Beginning of class, $9 / 6$
Given a vector's components, $\hat{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, it is easy to determine its direction in \mathbb{R}^{3} but how might we determine the other defining property of a vector, its magnitude?

Determine the lengths of $\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$. We denote these $|\hat{\mathbf{u}}|$ and $|\hat{\mathbf{v}}|$.

Determine the length of the vector $\hat{\mathbf{w}}$ depicted on the left.

Give formulas to compute the length of any two dimensional or three dimensional vector. For example, if $\hat{\mathbf{a}}=\left\langle a_{1}, a_{2}\right\rangle$ and $\hat{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, find

$$
\begin{aligned}
& |\hat{\mathbf{a}}|= \\
& |\hat{\mathbf{b}}|=
\end{aligned}
$$

We call vectors with length 1 unit vectors. For example, the three vectors

$$
\hat{\mathbf{i}}=\langle 1,0,0\rangle \quad \hat{\mathbf{j}}=\langle 0,1,0\rangle \quad \hat{\mathbf{k}}=\langle 0,0,1\rangle
$$

are all unit vectors. These play a special role and are called the standard basis vectors. Sketch these to the right.

The role these basis vectors play are to decompose any vector into a sum of these three. For example,

$$
\begin{aligned}
\langle 2, \pi, 7\rangle & =\langle 2,0,0\rangle+\langle 0, \pi, 0\rangle+\langle 0,0,7\rangle \\
& =2\langle 1,0,0\rangle+\pi\langle 0,1,0\rangle+7\langle 0,0,1\rangle=2 \hat{\mathbf{i}}+\pi \hat{\mathbf{j}}+7 \hat{\mathbf{k}}
\end{aligned}
$$

Suppose $\hat{\mathbf{c}}=2 \hat{\mathbf{i}}+7 \hat{\mathbf{k}}$ and $\hat{\mathbf{d}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}}$. Express $3 \hat{\mathbf{c}}+2 \hat{\mathbf{d}}$ in terms of $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$.

There are, of course, many more unit vectors than simply $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$. For example $\langle 1 / \sqrt{2}, 1 / \sqrt{2}, 0\rangle$. In fact, for any vector $\hat{\mathbf{a}}$, we can find a unit vector $\hat{\mathbf{u}}$ pointing in the same direction.

As $(1 /|\hat{\mathbf{a}}|)$ is a postive scalar, we have that $\hat{\mathbf{u}}=\frac{\hat{\mathbf{a}}}{|\hat{\mathbf{a}}|}$ points in the same direction as $\hat{\mathbf{a}}$. Show that $\hat{\mathbf{u}}$ is a unit vector.

Find a unit vector pointing in the opposite direction of $2 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$.

Below are several properties of vectors. Verify any 3 of these.
If $\hat{\mathbf{a}}, \hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ are vectors in \mathbb{R}^{2} or \mathbb{R}^{3}, and c and d are scalars then

1. $\hat{\mathbf{a}}+\hat{\mathbf{b}}=\hat{\mathbf{b}}+\hat{\mathbf{a}}$
2. $\hat{\mathbf{a}}+\hat{\mathbf{b}}+\hat{\mathbf{c}}=\hat{\mathbf{a}}+\hat{\mathbf{b}}+\hat{\mathbf{c}}$
3. $\hat{\mathbf{a}}+\hat{\mathbf{0}}=\hat{\mathbf{a}}$
4. $\hat{\mathbf{a}}+(-\hat{\mathbf{a}})=0$
5. $c(\hat{\mathbf{a}}+\hat{\mathbf{b}})=c \hat{\mathbf{a}}+c \hat{\mathbf{b}}$
6. $(c+d) \hat{\mathbf{a}}=c \hat{\mathbf{a}}+d \hat{\mathbf{a}}$
7. $(c d) \hat{\mathbf{a}}=c(d \hat{\mathbf{a}})$
8. $1 \hat{\mathbf{a}}=\hat{\mathbf{a}}$
9. $|c \hat{\mathbf{a}}|=|c||\hat{\mathbf{a}}|$
