Матн 2110Q	PRACTICE EXAM 2	Spring 2017		
Name:	SOLUTIONS			
DISCUSSION SEC	CTION:			

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must show your work to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are not allowed.

Grading - For Administrative Use Only

Page:	1	2	3	4	5	Total
Points:	11	11	7	8	13	50
Score:						

[5]

1. Compute the arc length of the curve given by $\vec{r}(t) = \langle \frac{4}{3}t^{3/2}, \frac{1}{2}t^2 - 2t, \frac{4}{3}t^{3/2} \rangle$ from t = 1 to t = 2.

$$|\vec{r}'(t)| = \langle 2\sqrt{t}, t-2, 2\sqrt{t} \rangle$$

$$\Rightarrow |\vec{r}'(t)| = \sqrt{4t + (t-2)^2 + 4t} = \sqrt{t^2 + 4t + 4} = t + 2$$

$$= \left(\frac{1}{2}t^2 + 2t\right) \Big|_{a}^{2} = (2+4) - (\frac{1}{2}+2) = \frac{7}{2}$$

2. Compute the line integral of $\vec{F} = \langle y - x, x^3 \rangle$ over the portion of the curve $y = x^2$ from (-1, 1) to (1, 1).

not conservative
since
$$\frac{\partial f}{\partial y} = 1 \neq 3x^2 = \frac{\partial Q}{\partial x}$$
!
C: $\vec{r}(t) = \langle t, t^2 \rangle$, $-1 \leq t \leq 1$
 $\Rightarrow \vec{r}'(t) = \langle 1, 2t \rangle$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{-1}^{1} \langle t^{2} - t, t^{3} \rangle \cdot \langle 1, 2t \rangle dt$$

$$= \int_{-1}^{1} (t^{2} - t + 2t^{4}) dt = 2 \int_{0}^{1} (t^{2} + 2t^{4}) dt$$

$$(-a^{4} \circ a) \text{ even old even}$$

$$= 2(\frac{1}{3}t^{3} + \frac{2}{5}t^{5}) |_{0}^{1} = 2(\frac{1}{3} + \frac{2}{5}) = \frac{22}{15}$$

Page 1 of 5

3. Set up but do not evaluate a triple integral in cylindrical coordinates to find the volume enclosed between the xy-plane and $z = 2(x^2 + y^2) + 3$ over the region D in the second quadrant enclosed by $x^2 + y^2 = 25$ using cylindrical coordinates.

4. Set up but do not evaluate a triple integral in Cartesian coordinates to find the volume enclosed between y = 0, z = 0, $y = \sqrt{x}$ and z = 1 - x.

[6]

V= DD (dv

= 0100x01-x1dz

[7]

5. Compute the line integral of f(x,y) = 4xy over the line segment from (1,-2) to (3,0).

C:
$$\vec{r}(t) = \langle 1, -2 \rangle + t \langle 3 - 1, 0 - (-2) \rangle$$

= $\langle 1 + 2t, -2 + 2t \rangle$, $0 \leq t \leq 1$
 $\Rightarrow \vec{r}'(t) = \langle 2, 2 \rangle$ and $|\vec{r}'(t)| = \sqrt{8}$.

$$\int_{C}^{1} f(x,y) ds = \int_{0}^{1} 4(1+2t)(-2+2t) \sqrt{8} dt$$

$$= 8\sqrt{8} \int_{0}^{1} (1+2t)(t-1) dt$$

$$= 8\sqrt{8} \int_{0}^{1} (2t^{2}-t-1) dt$$

$$= 8\sqrt{8} \left(\frac{2}{3}t^{3}-\frac{1}{2}t^{2}-t\right) \Big|_{0}^{1}$$

$$= 8\sqrt{8} \left(\frac{2}{3}t^{3}-\frac{1}{2}t^{2}-t\right) \Big|_{0}^{1}$$

$$= 8\sqrt{8} \left(\frac{2}{3} - \frac{1}{2} - 1 \right) = 8\sqrt{8} \left(-\frac{5}{6} \right) = \frac{-20\sqrt{8}}{3}$$

[8]

- 6. Let C be the path consisting of the line segment from (0,0) to (1,1), followed by the portion of the circle of radius $\sqrt{2}$ traced counterclockwise from (1,1) to (1,-1), followed by the line segment from (1,-1) back to (0,0). Sketch C, then use Green's Theorem to compute the line integral of $\vec{F} = \langle x^2 xy, e^{\cos y} \rangle$ over C.
- $\overrightarrow{F} = \langle P, Q \rangle = \langle \chi^2 \chi y, e^{\cos y} \rangle$ $\Rightarrow \frac{\partial p}{\partial y} = -x \text{ and } \frac{\partial Q}{\partial x} = 0$ $50 \frac{\partial Q}{\partial x} - \frac{\partial f}{\partial y} = X.$ = D x dA (D is nicely described in polar) $=\int_{\pi}^{\pi}\int_{0}^{\sqrt{2}} (r(os\theta)) \frac{r}{x} \frac{dr}{d\theta} d\theta$ $= \left(\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cos \theta \, d\theta\right) \left(\int_{0}^{\sqrt{2}} r^{2} \, dr\right) = \frac{-4}{3}.$ Page 4 of 5 252

- 7. Let $\vec{F} = (3x^2 2xy + 5, y^3 x^2)$ be a vector field.
 - (a) Find a potential function f so that $\vec{F} = \vec{\nabla} f$.

[3]

$$f(x_{i}y) = \int (3x^{2} - 2xy + 5) dx = x^{3} - x^{2}y + 5x + g(y)$$

$$\Rightarrow f_{y} = -x^{2} + g'(y) = y^{3} - x^{2} \Rightarrow g'(y) = y^{3} \Rightarrow g(y) = \frac{1}{4}y^{4} + K$$
(constant)

:.
$$f(x_{i}y) = x^{3} - x^{2}y + 5x + 4y^{4} + K$$

(b) If C is the circle $(x-2)^2 + (y+4)^2 = 9$ traced once clockwise, find the value of the line [2] integral $\int_{C} \vec{F} \cdot d\vec{r}$.

F is conservative and the curve Cir closed, so by the Fundamental Theorem for Line # Theorems (or by Green's Theorem) we have & F. d=0.

8. Write the following integral using spherical coordinates if the solid E is bounded below by [8] $z = \sqrt{x^2 + y^2}$ and above by z = 1. Do not evaluate.

: If $y^2 \neq dV = \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\sec\phi} (p \sin\phi \sin\phi)^2 (p \cos\phi) (p^2 \sin\phi) d\rho d\phi d\phi$ = dV