Math 2110Q
Practice Exam 1
FALL 2017

NAME:

Discussion Section:

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must show your work to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are not allowed.

Grading - For Administrative Use Only

Page:	1	2	3	4	5	Total
Points:	8	13	11	7	11	50
Score:						

1. Let $\vec{a}=\langle 5,-1,2\rangle$ and $\vec{b}=\langle 3,1,1\rangle$. Find $\vec{a} \cdot(\vec{a} \times \vec{b})$
2. If the angle between two planes is defined as the angle between their normal vectors, find the cosine of the angle between the planes $x+y=2$ and $x+y+\sqrt{2} z=\sqrt{6}$.
3. Find and classify all critical points for the function $f(x, y)=\frac{1}{2} y^{2}-\frac{1}{3} x^{3}-x y+2 x+5$
4. Find a vector equation for any one line that is parallel to the plane $3 x-5 y+z=10$.
5. Let $f(x, y)=x^{2}\left(y^{3}+1\right)^{2}+3 x$. Find an equation of the tangent plane at the point $(1,1,7)$.
6. Let D be the region in the $x y$-plane enclosed by $y=x, y=-x$, and $x^{2}+y^{2}=8$ with $x \geq 0$. Sketch D and set up a double integral in polar coordinates to compute the area of D. Do not evaluate.
7. Consider the double integral $\int_{0}^{5} \int_{y}^{5} e^{x^{2}} d x d y$.
(a) Sketch the region being integrated over.
(b) Evaluate the integral.
8. Give equations and sketches for two different traces of the surface $x^{2}+4 y^{2}-z^{2}=0$.
9. Let $f(x, y)=x^{2} e^{x y}$
(a) Find $D_{\vec{u}} f(2,0)$ if \vec{u} is the unit vector $\left\langle\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right\rangle$.
(b) Find the direction in which the derivative of f at $(1,1)$ is maximized, and find the value of the maximum derivative.
