

University of Connecticut Department of Mathematics

Math 2110Q

PRACTICE EXAM 1

 $Fall \ 2017$

NAME:

DISCUSSION SECTION:

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must **show your work** to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are not allowed.

Page:	1	2	3	4	5	Total
Points:	8	13	11	7	11	50
Score:						

Grading - For Administrative Use Only

1. Let $\vec{a} = \langle 5, -1, 2 \rangle$ and $\vec{b} = \langle 3, 1, 1 \rangle$. Find $\vec{a} \cdot (\vec{a} \times \vec{b})$

2. If the angle between two planes is defined as the angle between their normal vectors, find the [5] cosine of the angle between the planes x + y = 2 and $x + y + \sqrt{2}z = \sqrt{6}$.

[3]

3. Find and classify all critical points for the function $f(x,y) = \frac{1}{2}y^2 - \frac{1}{3}x^3 - xy + 2x + 5$ [8]

4. Find a vector equation for any one line that is parallel to the plane 3x - 5y + z = 10. [5]

5. Let $f(x,y) = x^2(y^3 + 1)^2 + 3x$. Find an equation of the tangent plane at the point (1, 1, 7). [5]

6. Let D be the region in the xy-plane enclosed by y = x, y = -x, and x² + y² = 8 with x ≥ 0. [6] Sketch D and set up a double integral in polar coordinates to compute the area of D. Do not evaluate.

- 7. Consider the double integral $\int_0^5 \int_y^5 e^{x^2} dx dy$.
 - (a) Sketch the region being integrated over.

(b) Evaluate the integral.

[2]

[5]

8. Give equations and sketches for two different traces of the surface $x^2 + 4y^2 - z^2 = 0.$ [4]

9. Let $f(x, y) = x^2 e^{xy}$

(a) Find
$$D_{\vec{u}}f(2,0)$$
 if \vec{u} is the unit vector $\left\langle \frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}} \right\rangle$. [4]

(b) Find the direction in which the derivative of f at (1,1) is maximized, and find the value [3] of the maximum derivative.