Calc β , BRIDGE 2018

Name: Vey

Due: Monday, July 9

Homework #3: The precise definition of the limit

Note: Your work can only be assessed if it is legible. You must show all of you work on all problems save 1 and 5. You do not need a calculator to complete this assignment.

1. Consider the function f(x) whose graph is given below. It is clear that $\lim_{x\to 1} f(x) = 3$. Hence, given any $\varepsilon > 0$, we should be able to find a $\delta > 0$ such that $|f(x) - 3| < \varepsilon$ when $|x - 1| < \delta$.

Let $\varepsilon = 0.4$. Find an appropriate δ such that $|x-2| < \delta$ implies $|f(x)-3| < \varepsilon = 0.4$.

So IF [S=0.2.] then f(x) is within &= 0.4 of 3.

2. Let
$$f(x) = 2x + 3$$
 and $\varepsilon = 0.5$. We consider $\lim_{x\to 0} 2x + 3$.

(a) Find
$$\lim_{x\to 0} 2x + 3$$
.

(b) Let $L = \lim_{x\to 0} 2x + 3$, the number you found in the previous part. Find a number $\delta > 0$ such that if $|x-0| < \delta$ then $|f(x)-L| < \varepsilon$.

$$\xi=0.5$$
, L=3, weed ξ s.t. $|x| \in S$ implies $|f(x)-3| \in 0.5$
 $|f(x)-3|=|2x+3-3|=|2x| \in 0.5$ if $|x| \in 0.25$.
So, choose $|\xi=0.25|$

3. Let $f(x) = x^2 - 2x + 6$ and note $\lim_{x\to 1} x^2 - 2x + 6 = 5$. Here we will work through verifying this fact. To do this, we will need to find for any $\varepsilon > 0$ a related $\delta > 0$ such that if $|x-1| < \delta$ then $|f(x)-5| < \varepsilon$.

(a) We begin by studying a few concrete examples. Let
$$\varepsilon = \frac{1}{4}$$
. Find an appropriate value for δ .

$$|x^2-2x+6-5| = |(x-1)^2| = |x-1|^2 < \frac{1}{4}$$
 if $|x-1| < \frac{1}{2}$

(b) Repeat for $\varepsilon = \frac{1}{25}$ | Similary | 6= +

Susc your discretion if they should enough work.

(c) Repeat for $\varepsilon = \frac{1}{100}$

(d) Is there a common relationship between each ε and δ you have found?

Yes. & seens to be the squere-roof of E.

(e) Let $\varepsilon > 0$ be arbitrary. Find a $\delta > 0$ (in terms of ε) that guarantees $|f(x) - 5| < \varepsilon$ when $|x - 1| < \delta$.

Need 500 st. If(x)-5/c2 when 1x-1/c5.

Need | f(x)-5| = |x2-2x+6-5| = |x-1|2 < &

So choose $|\delta=\sqrt{5}|$

(f) Bonus:

Use the previous part to prove $\lim_{x\to 1} x^2 - 2x + 6 = 5$.

(To get started, write something like "Let ε be any positive number. Then choose δ to be")

Proof. Let 270. Set 5 = JEE.

"We claim if 1x-1/c5= 12", then 1x(x)-5/c2.

To see this note

 $|f(x)-5|=|x-1|^2 < \delta^2 = \int_{\frac{\pi}{2}}^2 = \int_{$

This verifies if f(x)=5.

4. Bonus: Using the precise definition of the limit, prove that $\lim_{x\to -3} 1 - 4x = 13$.

Before starting the proof we figure alt of should be.

Noce $|x+3| < 8 \implies |1-4x-13| < 8$.

So $|1-4x-13|=|-12-4x|=|-4(x+3)|=4|x+3|<\epsilon$. So, need $|x+3|<\frac{\epsilon}{4}$ to make this work. Let's pick $S:\frac{\epsilon}{4}$.

Proof. Let ξ be any pos. number. Choose $S = \frac{\xi}{4}$. We claim if $|x+3| < \delta = \frac{\xi}{4}$ then $|1-4x-13| < \xi$. To see this, note $|1-4x-13| = |-4(x+3)| = 4|x+3| < 4 \le = 4 \cdot \frac{\xi}{4} = \xi$.

this verifice that Ling 1-4x = 13 by
the oblinition of the limit.