Calc 8, BRIDGE 2018 Name: \ch Due: Tuesday, July 31

Homework #16: The fundamental theorem of calculus

Note: Your work can only be assessed if it is legible.
1. Find the derivative of each of the following functions.
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2. Evaluate the following definite integrals using the fundamental theorem of calculus.
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3. Find the area bound by “one hump” of sinz. That is, find the area shown below. The plotted graph is
y = sinz on the interval [0, 27].
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4. On the previous homework, you estimated the area under the curve y = 4 — z2 over the interval [0, 2]
Use the fundamental theorem of calculus to compute the exact area.
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5. (a) Let Ao(z)=f L —£dt, Al(:c)=f 1 — £ dt, and Ag(az)=f 1—£dt.
0 1 2

Compute these explicitly in terms of z using part 2 of the fundamental theorem of calculus.
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(b) Over the interval [0,2], use your answers in part (a) to sketch the graphs of y = Ag(z), y = A1(z),
and y = Ay(x) on the same set of axes. 2
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(¢) How are the three graphs in part (a) related to each other? In particular, what does part 1 of the
fundamental theorem of calculus tell you about the graphs in part (a)?
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(d) On a graph of y = 1 —¢2, for 0 < ¢ < 2, shade the region with signed area Ag(1.5). Indicate with
+ and — which area counts positively and which negatively.
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6. T/F (with justification) The function F(z) = f cos(t?) dt is an antiderivative of cos(z?).
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8. Evaluate each indefinite integral.
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9. Verify by differentiation that the following equation is true:
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In class, we mentioned that the definite integral of f’(z) over an interval [a, b] represents the net change
in f(z) due to the fundamental theorem of calculus:
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To see this in a scientific context, note the following implications:

If V(t) is the volume of water in a reservoir at time t, then its derivative V() is the rate at which
water flows into the reservoir at time ¢. So

V) dt = Vi(ta) — Vi(tr)

is the change in the amount of water in the reservoir between time ¢; and time ¢».

If [C](t) is the concentration of the product of a chemical reaction at time ¢, the rate of reaction is
the derivative d[C]/dt. So
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is the change in the concentration of [C] from time t; to to.

If the mass of a rod measured from the left end to a point z is m(x), then the linear density is
p(z) =m/(z). So

b
fmwm=m@—m@

a

is the mass of the segment of the rod that lies between z = a and z = b.

If the rate of growth of a population is dn/dt, then
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is the net change in population during the time period from ¢; to ts.

If an object moves along a straight line with position function s(t), then its velocity is v(t) = §'(¢),
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is the net change of position, or displacement, of the particle during the time period from ¢; to ¢s.

The acceleration of the object is a(t) = v'(t), so
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is the change in velocity from time ¢; to t.
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10. Water is released into a tank at the rate r(t) = 5 + /¢ ft3/min at time ¢ (in minutes). At ¢ = 1 minute,

there is 12 ft3 of water in the tank.
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Evaluate f r(t) dt.
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(b) In the context given above, what does the value in part (a) tell us?
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(¢) Determine the volume of water in the tank at time ¢ = 9 minutes.
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