Caic £, BRIDGE 2018 Name: L(f«‘f

. Due: Wednesday, July 11

Homework #5: The derivative of a function

Note: Your work can only be assessed if it is legible. You must use the limit definition of the derivative. You
do not need a calculator to complete this assignment.

1. Suppose f(z) is a function such that f(3) = 2 and f/(3) = 4. Give an equation for the line tangent to
the graph y = f(z) at the point (3, f(3)).
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2. The function f(z) = .
linetoy=f(z)atz =1

7 is graphed below. Find f/(1) and use it to give an equation of the tangent
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3. Find the derivative f'{z) for each of the following functions.
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b) f(e) = V32
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(d) f(z) = mz + b where m and b are arbitrary constants.
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4, The graph of ¥y = f{z) is pictured below.
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(a) Compute each derivative below. If a derivative does not exist, write DNE.
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(b) Sketch a graph of the derivative f/(z) for —3 < = < 3.
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5. In class we mentioned that if a function is differentiable at = = a then it is alsc confinuous there. With
that in mind, consider the following statements,

(a) T/F (with justification) A function that is continuous at a is also differentiable at a.
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(b) T/F (with justification) If f/(2) exists, then lim,,2 f(z) = F(2).
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6. Bonus: Give the name of a function which is continuous at every point but is differentiable at no point.

Hint: Use Google.
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