Homework #5: The derivative of a function

Note: Your work can only be assessed if it is legible. You must use the limit definition of the derivative. You do not need a calculator to complete this assignment.

1. Suppose f(x) is a function such that f(3) = 2 and f'(3) = 4. Give an equation for the line tangent to the graph y = f(x) at the point (3, f(3)).

Tangert line:
$$y - f(3) = f'(3)(x-3)$$

So $y - 2 = y(x-3)$

2. The function $f(x) = \frac{1}{x+1}$ is graphed below. Find f'(1) and use it to give an equation of the tangent line to y = f(x) at x = 1.

$$f(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{1}{x + 1} = \lim_{x \to 1} \frac{1}{x - 1} \left(\frac{2 - (x + 1)}{2(x + 1)} \right)$$

$$= \frac{1-x}{x-1} \frac{1-x}{(x-1)(x+1)\cdot 2} \frac{1-1}{x-1} \frac{1-1}{2} \frac{x-1}{(x-1)(x+1)}$$

$$= \frac{1-x}{x-1} \frac{1-1}{2} \frac{1-1}{x-1} \frac{1-1}{2} \frac{1-1}{x-1}$$

Tagent Ime:
$$y - f(1) = f'(1)(x-1)$$

So $|y - \frac{1}{2} = \frac{1}{4}(x-1)$

3. Find the derivative f'(x) for each of the following functions.

(a)
$$f(x) = 4x^2 + 1$$

$$f'(k) = \lim_{h \to 0} \frac{\sqrt{2x+2h} - \sqrt{2x}}{\sqrt{\sqrt{2x+2h} + \sqrt{2x}}} = \lim_{h \to 0} \frac{2x+2h - 2x}{\sqrt{\sqrt{2x+2h} + \sqrt{2x}}}$$

$$f'(x) = \frac{1-x}{2+x}$$

$$f'(x) = \lim_{h \to 0} \left(\frac{1-(x+h)}{2+(x+h)} - \frac{1-x}{2+x} \right) \cdot \frac{1}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{(1-(x+h))(2+x)}{(2+x+h)(2+x)} \right)$$

(d) f(x) = mx + b where m and b are arbitrary constants.

4. The graph of y = f(x) is pictured below.

- (a) Compute each derivative below. If a derivative does not exist, write DNE.
 - i. f'(-2)
 - = 0
 - ii. f'(1)
 - DNE
 - iii. f'(-1)
 - DNE
 - iv. f'(2)
 - = 1
 - v. f'(0)
 - = 2

4 = -

(b) Sketch a graph of the derivative f'(x) for $-3 \leqslant x \leqslant 3$.

- 5. In class we mentioned that if a function is differentiable at x = a then it is also continuous there. With that in mind, consider the following statements.
 - (a) T/F (with justification) A function that is continuous at a is also differentiable at a.

(b) T/F (with justification) If f'(2) exists, then $\lim_{x\to 2} f(x) = f(2)$.

IT If
$$f(x)$$
 is differentiable at 2,
then $f(x)$ is continuous at 2,
therefore $\lim_{x\to 2} f(x) = f(2)$.

6. **Bonus**: Give the name of a function which is continuous at every point but is differentiable at no point. *Hint*: Use Google.