\qquad Due: Tuesday, July 10

Homework \#4: Limits and infinity

Note: Your work can only be assessed if it is legible. You do not need a calculator to complete this assignment.

1. Given below is the graph of a function $f(x)$.

(a) Specify the vertical asymptotes of $y=f(x)$ and justify your statements with an appropriate statement regarding limits.
(b) Specify the horizontal asymptotes of $y=f(x)$ and justify your statements with an appropriate statement regarding limits.
(c) Bonus: Give an expression for a possible function $f(x)$ which might have this graph.
2. Compute the following limits or explain why they do not exist (and if it approaches ∞ or $-\infty$.)
(a) $\lim _{x \rightarrow 1^{+}} \frac{x-2}{x-1}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x+3}{6 x-7}$
(c) $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{x^{2}}$
(d) $\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{6 x^{4}-1}}$
(e) $\lim _{x \rightarrow-\infty} \frac{4 x^{3}+6 x^{2}-2}{2 x^{3}-4 x+5}$
(f) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-x$.

Hint: Multiply the expression by 1 in the form of the conjugate radical.
3. (a) T / F (with justification) The line $x=1$ is a vertical asymptote of the graph $y=\frac{x^{2}-1}{x^{2}-2 x+1}$.
(b) T/F (with justification) The line $x=1$ is a vertical asymptote of the graph $y=\frac{x^{2}-2 x+1}{x^{2}-1}$.
4. Consider the function $f(x)=\frac{x}{\sqrt{4+2 x^{2}}}$.
(a) Compute $\lim _{x \rightarrow \infty} f(x)$.
(b) Compute $\lim _{x \rightarrow-\infty} f(x)$.
(c) What are the horizontal asymptotes of $y=f(x)$?
(d) Does $f(x)$ have any vertical asymptotes? Justify your answer.
(e) Based upon your previous work, sketch a possible graph of $f(x)$.

