\qquad

Homework \#3: The precise definition of the limit

Note: Your work can only be assessed if it is legible. You must show all of you work on all problems save 1 and 5. You do not need a calculator to complete this assignment.

1. Consider the function $f(x)$ whose graph is given below. It is clear that $\lim _{x \rightarrow 1} f(x)=3$. Hence, given any $\varepsilon>0$, we should be able to find a $\delta>0$ such that $|f(x)-3|<\varepsilon$ when $|x-1|<\delta$.

Let $\varepsilon=0.4$. Find an appropriate δ such that $|x-2|<\delta$ implies $|f(x)-3|<\varepsilon=0.4$.
2. Let $f(x)=2 x+3$ and $\varepsilon=0.5$. We consider $\lim _{x \rightarrow 0} 2 x+3$.
(a) Find $\lim _{x \rightarrow 0} 2 x+3$.
(b) Let $L=\lim _{x \rightarrow 0} 2 x+3$, the number you found in the previous part. Find a number $\delta>0$ such that if $|x-0|<\delta$ then $|f(x)-L|<\varepsilon$.
3. Let $f(x)=x^{2}-2 x+6$ and note $\lim _{x \rightarrow 1} x^{2}-2 x+6=5$. Here we will work through verifying this fact. To do this, we will need to find for any $\varepsilon>0$ a related $\delta>0$ such that

$$
\text { if }|x-1|<\delta \text { then }|f(x)-5|<\varepsilon
$$

(a) We begin by studying a few concrete examples. Let $\varepsilon=\frac{1}{4}$. Find an appropriate value for δ.
(b) Repeat for $\varepsilon=\frac{1}{25}$.
(c) Repeat for $\varepsilon=\frac{1}{100}$.
(d) Is there a common relationship between each ε and δ you have found?
(e) Let $\varepsilon>0$ be arbitrary. Find a $\delta>0$ (in terms of ε) that guarantees $|f(x)-5|<\varepsilon$ when $|x-1|<\delta$.

(f) Bonus:

Use the previous part to prove $\lim _{x \rightarrow 1} x^{2}-2 x+6=5$.
(To get started, write something like "Let ε be any positive number. Then choose δ to be")
4. Bonus: Using the precise definition of the limit, prove that $\lim _{x \rightarrow-3} 1-4 x=13$.

