Homework #16: The fundamental theorem of calculus

Note: Your work can only be assessed if it is legible.

1. Find the derivative of each of the following functions.

(a)
$$\int_0^x \frac{1}{1+t^5} dt$$

(b)
$$\int_2^x \sin(e^{2t}) dt$$

(c)
$$\int_{1}^{e^x} \ln t \, dt$$

(d)
$$\int_0^{x^3} t^2 \cos t \, dt$$

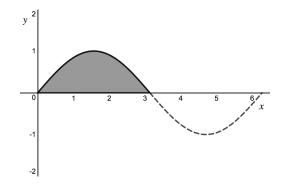
2. Evaluate the following definite integrals using the fundamental theorem of calculus.

(a)
$$\int_{-1}^{1} x^{20} + x^{18} dx$$

(b)
$$\int_0^1 x^e + e^x \, dx$$

(c)
$$\int_0^1 e^{x+1} \, dx$$

3. Find the area bound by "one hump" of $\sin x$. That is, find the area shown below. The plotted graph is $y = \sin x$ on the interval $[0, 2\pi]$.



4. On the previous homework, you estimated the area under the curve $y = 4 - x^2$ over the interval [0,2]. Use the fundamental theorem of calculus to compute the exact area.

5. (a) Let $A_0(x) = \int_0^x 1 - t^2 dt$, $A_1(x) = \int_1^x 1 - t^2 dt$, and $A_2(x) = \int_2^x 1 - t^2 dt$. Compute these explicitly in terms of x using part 2 of the fundamental theorem of calculus.

(b) Over the interval [0,2], use your answers in part (a) to sketch the graphs of $y = A_0(x)$, $y = A_1(x)$, and $y = A_2(x)$ on the same set of axes.

(c) How are the three graphs in part (a) related to each other? In particular, what does part 1 of the fundamental theorem of calculus tell you about the graphs in part (a)?

(d) On a graph of $y = 1 - t^2$, for $0 \le t \le 2$, shade the region with signed area $A_0(1.5)$. Indicate with + and - which area counts positively and which negatively.

6. T/F (with justification) The function $F(x) = \int_0^x \cos(t^2) dt$ is an antiderivative of $\cos(x^2)$.

7. T/F (with justification)
$$\int_{-2}^{2} x^{-4} dx = \frac{x^{-3}}{-3}\Big|_{-2}^{2} = \frac{-1}{12}.$$

8. Evaluate each indefinite integral.

(a)
$$\int x^3 + \frac{1}{x^2} \, dx$$

(b)
$$\int \frac{x^5 - 2\sqrt{x^3}}{x} \, dx$$

(c)
$$\int \frac{\sin x}{\cos^2 x} dx$$
. (*Hint*: $\frac{1}{\cos x} = \sec x$.)

9. Verify by differentiation that the following equation is true:

$$\int \frac{1}{x^2 \sqrt{1+x^2}} \, dx = \frac{-\sqrt{1+x^2}}{x} + C.$$

In class, we mentioned that the definite integral of f'(x) over an interval [a, b] represents the *net change* in f(x) due to the fundamental theorem of calculus:

$$\int_a^b f'(x) \, dx = f(b) - f(a).$$

To see this in a scientific context, note the following implications:

• If V(t) is the volume of water in a reservoir at time t, then its derivative V'(t) is the rate at which water flows into the reservoir at time t. So

$$\int_{t_1}^{t_2} V'(t) \, dt = V(t_2) - V(t_1)$$

is the change in the amount of water in the reservoir between time t_1 and time t_2 .

• If [C](t) is the concentration of the product of a chemical reaction at time t, the rate of reaction is the derivative d[C]/dt. So

$$\int_{t_1}^{t_2} \frac{d[C]}{dt} dt = [C](t_2) - [C](t_1)$$

is the change in the concentration of [C] from time t_1 to t_2 .

• If the mass of a rod measured from the left end to a point x is m(x), then the linear density is $\rho(x) = m'(x)$. So

$$\int_{a}^{b} \rho(x) \, dx = m(b) - m(a)$$

is the mass of the segment of the rod that lies between x = a and x = b.

• If the rate of growth of a population is dn/dt, then

$$\int_{t_1}^{t_2} \frac{dn}{dt} \, dt = n(t_2) - n(t_1)$$

is the net change in population during the time period from t_1 to t_2 .

• If an object moves along a straight line with position function s(t), then its velocity is v(t) = s'(t), so c^{t_2}

$$\int_{t_1}^{t_2} v(t) \, dt = s(t_2) - s(t_1)$$

is the net change of position, or *displacement*, of the particle during the time period from t_1 to t_2 .

• The acceleration of the object is a(t) = v'(t), so

$$\int_{t_1}^{t_2} a(t) \, dt = v(t_2) - v(t_1)$$

is the net change in velocity from time t_1 to t_2 .

10. Water is released into a tank at the rate $r(t) = 5 + \sqrt{t}$ ft³/min at time t (in minutes). At t = 1 minute, there is 12 ft³ of water in the tank.

(a) Evaluate
$$\int_{1}^{9} r(t) dt$$
.

(b) In the context given above, what does the value in part (a) tell us?

(c) Determine the volume of water in the tank at time t = 9 minutes.