Name: $\qquad$ Due: Thursday, July 5

## Homework \#2: Limits and continuity

Note: Your work can only be assessed if it is legible. You must show all of you work on all problems save 1 and 5. You do not need a calculator to complete this assignment.

1. The graph of $y=f(x)$ is below. Use it to compute each limit or explain why it doesn't exist.

(a) $\lim _{x \rightarrow 0^{-}} f(x)$
(g) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 1^{-}} f(x)$
(h) $\lim _{x \rightarrow 1} f(x)$
(c) $\lim _{x \rightarrow 2^{-}} f(x)$
(i) $\lim _{x \rightarrow 2} f(x)$
(d) $\lim _{x \rightarrow 0^{+}} f(x)$
(j) $f(0)$
(e) $\lim _{x \rightarrow 1^{+}} f(x)$
(k) $f(1)$
(f) $\lim _{x \rightarrow 2^{+}} f(x)$
(l) $f(2)$
2. $\mathrm{T} / \mathrm{F}$ (with justification) If $\lim _{x \rightarrow 2} g(x)=0$ and $\lim _{x \rightarrow 2} h(x)=0$ then $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$ does not exist.
3. Evaluate the following limits exactly using algebra and limit laws.
(a) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(b) $\lim _{x \rightarrow-4} \frac{x^{2}+4 x}{x^{2}+3 x-4}$
4. The squeeze theorem will prove valuable in this problem.
(a) Evaluate $\lim _{x \rightarrow 1}(x-1)^{4} \cos \left(\frac{1}{1-x}\right)$.
(b) Bonus: Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Show that $\lim _{x \rightarrow 0} f(x)=0$.
5. Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ 4 & \text { if } x=1 \\ x+2 & \text { if } 1<x \leqslant 2 \\ 6-x & \text { if } x>2\end{cases}
$$

Evaluate the following limits if they exist. If a limit does not exist, write DNE.
(a) $\lim _{x \rightarrow 1^{-}} f(x)$
(g) $\lim _{x \rightarrow 2^{-}} f(x)$
(b) $\lim _{x \rightarrow 1^{+}} f(x)$
(h) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(i) $\lim _{x \rightarrow 2} f(x)$
6. The graph of a function $g(x)$ is given below. State the intervals on which $g$ is continuous.

7. Is

$$
f(x)= \begin{cases}\sin x & \text { if } x \leqslant 0 \\ 1+\cos x & \text { if } x>0\end{cases}
$$

continuous on the interval $(-1,1)$ ?
8. For what value of the constant $c$ is the function $f$ continuous on the entire real line $(-\infty, \infty)$ ?

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geqslant 2\end{cases}
$$

9. Use the intermediate value theorem to show that there is a solution to $x-\sqrt{x}-\ln x=0$ on the interval $[2,3]$. Explain your reasoning.

Hint: You may find the following facts helpful. $\begin{array}{cc}\sqrt{2} \geqslant 1.41 & \ln 2 \geqslant 0.69 \\ \sqrt{3} \leqslant 1.74 & \ln 3 \leqslant 1.1\end{array}$

