Homework #2: Limits and continuity

Note: Your work can only be assessed if it is legible. You must show all of you work on all problems save 1 and 5. You do not need a calculator to complete this assignment.

1. The graph of y = f(x) is below. Use it to compute each limit or explain why it doesn't exist.

(a) $\lim_{x\to 0^{-}} f(x)$

(g) $\lim_{x\to 0} f(x)$

(b) $\lim_{x\to 1^{-}} f(x)$

(h) $\lim_{x\to 1} f(x)$

(c) $\lim_{x\to 2^{-}} f(x)$

(i) $\lim_{x\to 2} f(x)$

(d) $\lim_{x\to 0^+} f(x)$

(j) f(0)

(e) $\lim_{x\to 1^+} f(x)$

(k) f(1)

(f) $\lim_{x\to 2^+} f(x)$

- (1) f(2)
- 2. T/F (with justification) If $\lim_{x\to 2} g(x) = 0$ and $\lim_{x\to 2} h(x) = 0$ then $\lim_{x\to 2} \frac{g(x)}{h(x)}$ does not exist.

3. Evaluate the following limits exactly using algebra and limit laws.

(a)
$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$$

(b)
$$\lim_{x \to -4} \frac{x^2 + 4x}{x^2 + 3x - 4}$$

4. The squeeze theorem will prove valuable in this problem.

(a) Evaluate
$$\lim_{x\to 1} (x-1)^4 \cos\left(\frac{1}{1-x}\right)$$
.

(b) Bonus: Let

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Show that $\lim_{x\to 0} f(x) = 0$.

5. Let

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 1, \\ 4 & \text{if } x = 1, \\ x + 2 & \text{if } 1 < x \le 2, \\ 6 - x & \text{if } x > 2. \end{cases}$$

Evaluate the following limits if they exist. If a limit does not exist, write DNE.

- (a) $\lim_{x\to 1^-} f(x)$
- (g) $\lim_{x\to 2^-} f(x)$
- (b) $\lim_{x\to 1^+} f(x)$
- (h) $\lim_{x\to 2^+} f(x)$
- (c) $\lim_{x\to 1} f(x)$
- (i) $\lim_{x\to 2} f(x)$

6. The graph of a function g(x) is given below. State the intervals on which g is continuous.

7. Is

$$f(x) = \begin{cases} \sin x & \text{if } x \le 0, \\ 1 + \cos x & \text{if } x > 0. \end{cases}$$

continuous on the interval (-1,1)?

8. For what value of the constant c is the function f continuous on the entire real line $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2, \\ x^3 - cx & \text{if } x \ge 2. \end{cases}$$

9. Use the intermediate value theorem to show that there is a solution to $x - \sqrt{x} - \ln x = 0$ on the interval [2, 3]. Explain your reasoning.