Homework \#15: Areas and the definite integral

Note: Your work can only be assessed if it is legible.

1. The graph of $y=4-x^{2}$ over the interval $[0,2]$ is given below.

In (a), (b), and (c) below, estimate $\int_{0}^{2} 4-x^{2}$ using 4 rectangles and the indicated type of endpoints (i.e. sketch the rectangles and then compute their areas).
(a) Right endpoints.
(b) Left endpoints.
(c) Midpoints.
2. Evaluate the integral $\int_{1}^{4} x+1 d x$ by drawing a picture and interpreting the integral in terms of areas.
3. Evaluate the integral $\int_{-3}^{3} \sqrt{9-x^{2}} d x$ by drawing a picture and interpreting the integral in terms of areas.
4. Evaluate the integral $\int_{0}^{2}-x d x$ by drawing a picture and interpreting the integral in terms of areas.
5. Use the definition of the definite integral to evaluate $\int_{0}^{3} 4 x^{3}+6 x d x$.

To do this, use a right endpoint sum and the fact that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.

