Homework \#14: L'Hospital's rule and anti-differentiation

Note: Your work can only be assessed if it is legible.

1. Evaluate the following limits:
(a) $\lim _{t \rightarrow 0} \frac{e^{2 t}-1}{\sin t}$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}$
(c) $\lim _{x \rightarrow 0} \frac{(x+1)^{13}-13 x-1}{x^{2}}$
(d) $\lim _{x \rightarrow 0} \frac{x-\tan x}{x-\sin x}$
(e) $\lim _{x \rightarrow \infty} x^{3} e^{-x^{2}}$
(f) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
2. Use the graphs of f and g and their tangent lines at $(2,0)$ to find $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$.

3. Complete the following table.

Function	Particular antiderivative	Function	Particular antiderivative
$x^{n}(n \neq-1)$	$\frac{x^{n+1}}{n+1}$	$\sin x$	
$\frac{1}{x}(x>0)$		$\cos x$	$\sin x$
e^{x}		$\sec ^{2} x$	
a^{x}	$\frac{a^{x}}{\ln a}$	$\sec x \tan x$	
$\frac{1}{\sqrt{1-x^{2}}}$	$\arcsin x$	$\frac{-1}{\sqrt{1-x^{2}}}$	
$\frac{1}{1+x^{2}}$			

4. Find the most general antiderivative of the function (use C as any constant).
(a) $f(x)=1+2 x+3 x^{2}+7 x^{3}$
(b) $f(x)=2 \cos x+e^{x}-3 \sin x$
(c) $f(x)=e^{2}$
5. Find a function $f(x)$ such that

$$
f^{\prime \prime}(x)=8 x^{3}+5, \quad f(0)=1, \quad f^{\prime}(1)=8
$$

6. The fastest recorded speed an F1 car has hit in a race is roughly 231 miles per hour or about $339 \mathrm{ft} / \mathrm{s}$. Suppose you take such a race car onto an unrestricted section of the autobahn ${ }^{1}$ to test its brakes. The maximum braking deceleration an F1 car can apply is $6.3 \mathrm{~g}^{2}$ or about $-202 \mathrm{ft} / \mathrm{s}^{2}$.
If, at top speed, you apply the brakes constantly at this force to stop the car, how far will you travel before the car comes to a stop? ${ }^{3}$
Hint: Use feet and seconds in your units.
7. T/F: (with justification) The antiderivative of $\cos \left(x^{2}\right)$ is $\sin \left(x^{2}\right)+C$.
[^0]
[^0]: ${ }^{1}$ The fastest recorded speed on the autobahn during normal operation (so not for a speed test) is 236 miles per hour.
 ${ }^{2}$ Here g refers to g-force: 5 g is equivalent to 5 times the acceleration due to gravity on the surface of the earth. For a little context, F1 drivers have reported forced exhalation at 6 g ("having the wind knocked out of you"); 3 g is the maximum acceleration experienced by a Space Shuttle launching or reentering the atmosphere (2.5-3 g is what you experience on a carnival "Gravitron"); acrobatic airplane pilots are permitted to force at most 30 g ; the Mantis Shrimp (which is a whole footnote on its own) strikes prey with its claw at $10,400 \mathrm{~g}$; and finally $2 \times 10^{11} \mathrm{~g}$ is the force of gravity near the surface of a neutron star.
 ${ }^{3}$ How long would it take you?

